
Machine learning algorithms for datasets
popularity prediction

Kipras Kančys and Valentin Kuznetsov

Abstract. This report represents continued study where ML algorithms
were used to predict databases popularity. Three topics were covered.
First of all, there was a discrepancy between old and new meta-data col-
lection procedures, so a reason for that had to be found. Secondly, differ-
ent parameters were analysed and dropped to make algorithms perform
better. And third, it was decided to move modelling part on Spark.

Keywords. Machine learning algorithms, classification problem, param-
eter selection, correlation matrix, Spark, pyspark.

1 Introduction

CMS experiment at CERN constantly produces huge amount of data. Latter on
the data is analysed all across the globe by many scientists. Some of datasets
are copied more than once to be more accessible. This study is trying to predict
dataset popularity that latter could lead to making more efficient data placement
at CERN CMS experiment. Machine learning algorithms are used on historical
usages of datasets and various meta-data information.

2 Earlier work

Two ways of meta-data collection process were implemented. One using Python
scripts (old-data). A bit latter another way of meta-data collection was written in
Go (new-data) that significantly speeds up the data collection process. However
the results given by both of these methods differs a lot. So first task of this
study was to find the reason for that. Multiple scripts for data transformation,
preparation and prediction were already written. That implemented more than
one ML algorithm. One of those scripts was perform rolling prediction (previous
weeks data were used to predict next week datasets popularity). That script was
analysed in this study.

3 Analysis

3.1 Discrepancy between old and new-data

Histograms were drawn for every parameter of both old and new-data. After
investigation conclusion were drawn that all parameters belonging to relN_...



2 Kipras Kančys and Valentin Kuznetsov

(number of releases associated with given dataset) group are biased. Instead
of calculating rel1_1 parameter for each dataset, it was accumulating rel1_1
value as a sum of all releases for all datasets. Below there are two histograms
of parameter rel1_1 taken from old and new-data. Similar distributions can be
observed for each relN_... parameter.

Old−data New−data

0

2500

5000

7500

10000

0 2 4 6 8 0 2 4 6 8
value

co
un

t

rel1_1

Fig. 1. Histogram of old and new-data rel1-1 parameter

Results before the bug and after a fix can be found in appendix A. Attention
should be brought to TPR values in old and new-data.

After the bug was fixed there was no need to continue using old-data as the
result of algorithms using old and new-data were similar. While data collection
using Go is much faster.

3.2 Selection of parameters

There are around 100 parameters describing each dataset. Some of them are
highly correlated (numberOfFiles and size) or simply uninformative (like dataset
id). So to get the best results out of our models some parameters had to be
dropped. Results before and after dropping parameters can be found in appendix
C.

3.3 Spark

It was noticed that once a huge amount of data (6, 9 or 12 months data) is
used the rolling script could take up to a day or two. So it was decided to move
modelling part on Spark. Code was written to run rolling prediction in Spark.
Three classifiers were available in pyspark library - Random Forest, Decision
Tree and GBT classifier. Also different metrics were used to measure model



Machine learning algorithms for datasets popularity prediction 3

accuracy - are under ROC and PR curves. Results can be found in appendix
E. Even though it looks like running code on Spark takes more time, it should
not be forgotten that Spark will perform much better in comparison with single
machine when more data will be used.

4 Conclusions

The main outcomes of this study are:

– The bug in new-data collection procedure was found.
– Optimal set of parameters were found for roll script.
– The code to run rolling prediction on Spark was written.



4 Kipras Kančys and Valentin Kuznetsov

A Results before and after the bug in roll script

The difference between old and new-data are very well visible in left graphs
(TPR). After the bug fix old and new-data perform similar as it should.

Fig. 2. Roll script results with data before the bug fix



Machine learning algorithms for datasets popularity prediction 5

Fig. 3. Roll script results with data after the bug fix



6 Kipras Kančys and Valentin Kuznetsov

B Correlation matrix

Parameters that are correlated more than 0.6 are show in the matrix.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

rel3_0

relt_1

rel1_8

rel2_0

dataset

parent

rel1_3

rel2_8

rel1_5

rel2_3

nfiles

size

0.7

0.01

−0.04

0.16

0.05

−0.06

−0.04

−0.18

−0.14

−0.05

−0.04

0.06

−0.03

0.22

0.11

−0.06

−0.04

−0.14

−0.1

−0.05

−0.03

0.94

0.33

0.31

−0.08

−0.04

−0.18

−0.16

0.18

0.2

0.28

0.27

−0.08

−0.05

−0.17

−0.17

0.18

0.2

0.7

−0.25

−0.14

−0.33

−0.26

−0.1

−0.04

−0.23

−0.13

−0.31

−0.25

−0.05

0.02

0.66

−0.1

−0.07

0.01

0

−0.06

−0.05

0.01

0.01

0.82

0.06

0.04

0.06

0.04 0.79

Fig. 4. Correlation matrix



Machine learning algorithms for datasets popularity prediction 7

C Results before dropping parameters

Fig. 5. Roll script results without drops



8 Kipras Kančys and Valentin Kuznetsov

D Results after dropping unnecessary parameters

Fig. 6. Roll script results after drops



Machine learning algorithms for datasets popularity prediction 9

E Spark results

Fig. 7. Spark results


