Simonas Joris Samaitis
University of Vilnius
26/09/2011

Regression Testing Suite for Condition Data Storage

Purpose:

Automated testing of condition data formats for backward and forward compatibility. Writing and
reading data between different versions and architectures of CMSSW framework. More detailed
information about the suite functionality can be found in regression testing suite presentation.

Contents :

1. Payload classes

2. Classes for accessing database

3. Test sequence execution script

4. Test sequences descriptor

5. Additional tables used in execution

6. Structure of log files

Payload classes :

Class dependency tree

TestPayloadClass

Primitives :

DataStructs:

Inheritances:

class TestData

Primitives
DataStructs
Inheritances

int testint;

long int testLonglint;

double testDouble;

std::string testString;

enum TestEnum { A=3, B, C=101, D, E, F};
TestEnum testEnum;

typedef int TestTypedef;

TestTypedef testTypedef;

TestStruct testStruct;
struct TestStruct
std::string testStructString;
int testStructint;
Color tmpColor;
struct Color
intr;
intg;
int b;
std::map<std::string, std::vector<Color> > testTripletMap;
std::list<std::string> testStringList;
std::pair<std::string, int> testPair;
std::set<char> testSet;
std::vector<std::string> testStringVector;
std::vector<int> testIntVector;

int commonlint;
std::vector<std::vector<int> > commonlintVector2d;

class TestInheritance : public TestData

std::vector<std::string> dataStringVector;

TestPayloadClass :

bool DataToFile(std::string fname); //Writes the payload data to file (debug)

Every class has == and != operators implemented for testing all included data types and structures.

Primitives primitives;
DataStructs dataStructs;
Inheritances inheritances;

Includes.h has all the headers and defines needed for payload classes.

Classes for accessing database :

TestFunct :

bool Write(std::string mappingName, int payloadID);
bool Read(std::string mappingName);

bool ReadAll();

bool CreateMetaTable();

bool DropTables(std::string connStr);

bool Dropltem(std::string mappingName);

Those functions are used to write the payload to DB. They can be accessed only using testCompat
with parameters :

usage : testCompat [arguments]

-c creates new TEST_SEED and metadata tables

-d [mappingName] drops item

-D drops all items

-r [mappingName] reads item

-R reads all items

-w [mappingName] -s [seed] writes item

afterwards the following arguments must be supplied :

-A [authentication path] —C [connection string]

Example s:

testCompat —c —A auth/path/here —C oracle://database@username

testCompat —r itemname —A auth/path/here —C oracle://database/username
testCompat —w itemname —s 10 —A auth/path/here —C oracle://database/username

It is possible to display the list of usage cases and possible arguments by executing “ testCompat —h”

Python script that executes the classes : testRegression.py

This scripts is used to manipulate version_table , results_table and test status databases(described
in later chapter) and to run test executables in specific order to test the regression. Every test
sequence compares two releases — candidate release (provided as an argument) and reference

release(provided as a second set of arguments) or a set of releases (defined in the version_table).
Following is the test sequence used :

Set environment for reference release

Drop all tables with reference release

Create MetaData tables with reference release
Write data with reference release

Set environment for candidate release

Read data with candidate release *

Write data with candidate release *

Read data with candidate release *

Set environment for reference release

Read data with reference release *

Segments marked with * represent key parts of the test, they are logged in test_status table.

Usage and command line arguments :

-c (-s) creates descriptor(status) db schema"

-d (-s) drops descriptor(status) db schema. Optional : -R [release] -A [arch] to drop single entry"
-w writes data to db. Goes only with -R [release] -A [arch] -P [path]"

-r (-s) reads contents of descriptor(status) db"

-t (-0) runs test. Goes only with -R [release] -A [arch] -P [path] -S [seed] -L [label]"

-(0) specifies reference release. supply additional parameters --R [refRelease] --A [refArch] --P
[refPath]

-L [label] marks the name of the test sequence used. Test sequences are described in the following
chapter.

Usage examples :

python testRegression.py -c

python testRegression.py -d -s

python testRegression.py -t -R CMSSW_4_2 8 -Aslc5_amd64_gcc451 -P home/myDirectory
python testRegression.py -t -0 -R CMSSW_4 2 8 -Aslc5_amd64_gcc451 -P home/myDirectory
--RCMSSW_3 8 7 --Aslc5 ia32_gcc434 --P /afs/user/test

python testRegresssion.py -h displays possible arguments

Test sequences descriptor file

Test sequences are defined in sequences.xml file, which has to be bundled with testRegression.py
execution script. Structure of the file :
<xml>

<test name = “[label]”>

<init>
<command exec ="[command]” env="[environment]” </command>
<command -/other commands/- ><command>

</init>

<sequence>
<command exec =”[command]” env="[environment]” Rname = “[status label] </command>
<command - / other commands / -> </command>

</sequence>

<final>
<command exec =”[command]” env="[environment]” </command>
<command -/other commands/- ><command>

</final>

</test>
</xml>

Each test must have <init>, <sequence> and <final> branches. <init> describes commands used to set
up the initial values used in the test, status of the commands executed is not logged in the
status_table, and final defines finalizing commands of the test.

<sequence> defines the core of the test, and every command used must return a value indicating
the success or failure of the test. Return value of 0 marks successful test, other values indicate
failure.

[label] of the test must be the same as used in execution of the testRegresssion.py Each test must
have a unique label.

[command] defines executable with path and parameters to be executed

[environment] is the environment in which the command must be run, either of reference release -
“ref” or “cand” — of candidate release.

[Rname] stands for the label of the return code from command executed. It is written in status_table
and displayed in webApp.

Additional tables used by webApp.py and testRegression.py :

Version_table

Version_table holds a list of reference releases that are tested in pair with candidate release.

ID RELEASE ARCH PATH

NUMBER |VARCHAR2(50) VARCHAR2(30) VARCHAR(255)

of entry

Number Name of reference release |Architecture of reference release Path to reference release

Table also has a primary key PK_ID of pair (RELEASE, ARCH)

Test_status

Test_status holds data associated with test runs and log data for each test sequence

ID RUNID | RDATE | LABEL T_RELEASE T_ARCH R_RELEASE | R_ARCH LOG
NUM NUM DATE VCH2(20) VCH2(50) VCH2(30) VCH2(50) VCH2(30) CLOB
No. of Num. Time Name of Candidate Candidate Reference | Reference Logfile
entry of run stamp test release architecture release architecture data

Table also has a primary key PK_ID2 of triplet (ID, RUNID, LABEL)

Test_results

Test_results table holds status information for each test pair(candidate release, reference release).
This information is displayed in webApp.

RID ID LABEL NAME STATUS
NUMBER | NUMBER VARCHAR(20) | VARCHAR(100) NUMBER
Number | ID of entry in Name of test Name of status to display in | Execution result
of entry | test_status webApp, [Rname] from xml (return code)
Sequences
Sequence table defines sequences for automatic incrementing of ids in test_status table.
LABEL ID RUNID
VARCHAR(20) NUMBER NUMBER
Name of test Number of entry Number of Run

Structure of test log files :

%% %% % %% % %% %% %% % %% %% %% %% % %% %% % %% %% %% % %% %% % %% %% % - start/end of test

HHHHHHEHEHEHE S - start/end of test sequence

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k %k 3k 3k %k >k %k >k 5k 3k >k >k >k >k 5k 3k 3k %k %k >k 3k 5k 3k %k %k %k kok %k sk kkokokokckkkkkokkkkkk _ Start/end Of command

Note for webApp.py : to use webApp, please create folders
named ,sessions“ and ,logs“ in the same directory as

webApp.py

