00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022 #include <string>
00023 #include <map>
00024 #include <iostream>
00025 #include <iomanip>
00026 #include <utility>
00027
00028 #include "HepPID/ParticleName.hh"
00029 #include "HepPID/Version.hh"
00030
00031 namespace HepPID {
00032
00033 typedef std::map< int, std::string > PartcleIdMap;
00034 typedef std::map< std::string, int > ParticleLookupMap;
00035
00042 class ParticleNameMap{
00043
00044 public:
00045
00046 typedef PartcleIdMap::const_iterator idIterator;
00047 typedef ParticleLookupMap::const_iterator nameIterator;
00048
00049 ParticleNameMap(PartcleIdMap m1,ParticleLookupMap m2)
00050 : itsNameMap(m1), itsLookupMap(m2) {}
00051 ~ParticleNameMap() {}
00052
00053 PartcleIdMap nameMap() const { return itsNameMap; }
00054 ParticleLookupMap lookupMap() const { return itsLookupMap; }
00055 idIterator begin() const { return itsNameMap.begin(); }
00056 idIterator end() const { return itsNameMap.end(); }
00057 idIterator find( const int & id) const { return itsNameMap.find(id); }
00058 nameIterator beginLookupMap() const { return itsLookupMap.begin(); }
00059 nameIterator endLookupMap() const { return itsLookupMap.end(); }
00060 nameIterator findString( const std::string & s) const { return itsLookupMap.find(s); }
00061
00062 private:
00063
00064 PartcleIdMap itsNameMap;
00065 ParticleLookupMap itsLookupMap;
00066
00067
00068 ParticleNameMap( const ParticleNameMap & );
00069 ParticleNameMap & operator = ( const ParticleNameMap & );
00070
00071 };
00072
00073 namespace {
00074
00075 ParticleNameMap const & ParticleNameInit()
00076 {
00077
00078 PartcleIdMap m;
00079 ParticleLookupMap nameMap;
00080
00081 static const struct {
00082 int pid;
00083 const char* pname;
00084 } SNames[] = {
00085 { 0, "" },
00086 { 1, "d" },
00087 { -1, "d~" },
00088 { 2, "u" },
00089 { -2, "u~" },
00090 { 3, "s" },
00091 { -3, "s~" },
00092 { 4, "c" },
00093 { -4, "c~" },
00094 { 5, "b" },
00095 { -5, "b~" },
00096 { 6, "t" },
00097 { -6, "t~" },
00098 { 7, "b'" },
00099 { -7, "b'~" },
00100 { 8, "t'" },
00101 { -8, "t'~" },
00102 { 11, "e^-" },
00103 { -11, "e^+" },
00104 { 12, "nu_e" },
00105 { -12, "nu_e~" },
00106 { 13, "mu^-" },
00107 { -13, "mu^+" },
00108 { 14, "nu_mu" },
00109 { -14, "nu_mu~" },
00110 { 15, "tau^-" },
00111 { -15, "tau^+" },
00112 { 16, "nu_tau" },
00113 { -16, "nu_tau~" },
00114 { 17, "tau'^-" },
00115 { -17, "tau'^+" },
00116 { 18, "nu_tau'" },
00117 { -18, "nu_tau'~" },
00118 { 21, "g" },
00119 { 22, "gamma" },
00120 { 10022, "virtual-photon" },
00121 { 20022, "Cerenkov-radiation" },
00122 { 23, "Z^0" },
00123 { 24, "W^+" },
00124 { -24, "W^-" },
00125 { 25, "H_1^0" },
00126 { 32, "Z_2^0" },
00127 { 33, "Z_3^0" },
00128 { 34, "W_2^+" },
00129 { -34, "W_2^-" },
00130 { 35, "H_2^0" },
00131 { 36, "H_3^0" },
00132 { 37, "H^+" },
00133 { -37, "H^-" },
00134 { 39, "G" },
00135 { 41, "R^0" },
00136 { -41, "R~^0" },
00137 { 42, "LQ_c" },
00138 { -42, "LQ_c~" },
00139 { 51, "H_L^0" },
00140 { 52, "H_1^++" },
00141 { -52, "H_1^--" },
00142 { 53, "H_2^+" },
00143 { -53, "H_2^-" },
00144 { 54, "H_2^++" },
00145 { -54, "H_2^--" },
00146 { 55, "H_4^0" },
00147 { -55, "H_4~^0" },
00148 { 81, "generator-specific+81" },
00149 { 82, "generator-specific+82" },
00150 { 83, "generator-specific+83" },
00151 { 84, "generator-specific+84" },
00152 { 85, "generator-specific+85" },
00153 { 86, "generator-specific+86" },
00154 { 87, "generator-specific+87" },
00155 { 88, "generator-specific+88" },
00156 { 89, "generator-specific+89" },
00157 { 90, "generator-specific+90" },
00158 { 91, "generator-specific+91" },
00159 { 92, "generator-specific+92" },
00160 { 93, "generator-specific+93" },
00161 { 94, "generator-specific+94" },
00162 { 95, "generator-specific+95" },
00163 { 96, "generator-specific+96" },
00164 { 97, "generator-specific+97" },
00165 { 98, "generator-specific+98" },
00166 { 99, "generator-specific+99" },
00167 { -81, "generator-specific-81" },
00168 { -82, "generator-specific-82" },
00169 { -83, "generator-specific-83" },
00170 { -84, "generator-specific-84" },
00171 { -85, "generator-specific-85" },
00172 { -86, "generator-specific-86" },
00173 { -87, "generator-specific-87" },
00174 { -88, "generator-specific-88" },
00175 { -89, "generator-specific-89" },
00176 { -90, "generator-specific-90" },
00177 { -91, "generator-specific-91" },
00178 { -92, "generator-specific-92" },
00179 { -93, "generator-specific-93" },
00180 { -94, "generator-specific-94" },
00181 { -95, "generator-specific-95" },
00182 { -96, "generator-specific-96" },
00183 { -97, "generator-specific-97" },
00184 { -98, "generator-specific-98" },
00185 { -99, "generator-specific-99" },
00186 { 100, "generator-specific+100" },
00187 { -100, "generator-specific-100" },
00188 { 101, "geantino" },
00189 { 102, "charged-geantino" },
00190 { 110, "reggeon" },
00191 { 130, "K_L^0" },
00192 { 310, "K_S^0" },
00193 { 990, "pomeron" },
00194 { 9990, "odderon" },
00195 { 1000001, "susy-d_L" },
00196 { -1000001, "susy-d_L~" },
00197 { 1000002, "susy-u_L" },
00198 { -1000002, "susy-u_L~" },
00199 { 1000003, "susy-s_L" },
00200 { -1000003, "susy-s_L~" },
00201 { 1000004, "susy-c_L" },
00202 { -1000004, "susy-c_L~" },
00203 { 1000005, "susy-b_1" },
00204 { -1000005, "susy-b_1~" },
00205 { 1000006, "susy-t_1" },
00206 { -1000006, "susy-t_1~" },
00207 { 1000011, "susy-e_L^-" },
00208 { -1000011, "susy-e_L^+" },
00209 { 1000012, "susy-nu_eL" },
00210 { -1000012, "susy-nu_eL~" },
00211 { 1000013, "susy-mu_L^-" },
00212 { -1000013, "susy-mu_L^+" },
00213 { 1000014, "susy-nu_muL" },
00214 { -1000014, "susy-nu_muL~" },
00215 { 1000015, "susy-tau_L^-" },
00216 { -1000015, "susy-tau_L^+" },
00217 { 1000016, "susy-nu_tauL" },
00218 { -1000016, "susy-nu_tauL~" },
00219 { 1000021, "gluino" },
00220 { 1000022, "susy-chi_1^0" },
00221 { 1000023, "susy-chi_2^0" },
00222 { 1000024, "susy-chi_1^+" },
00223 { -1000024, "susy-chi_1^-" },
00224 { 1000025, "susy-chi_3^0" },
00225 { 1000035, "susy-chi_4^0" },
00226 { 1000037, "susy-chi_2^+" },
00227 { -1000037, "susy-chi_2^-" },
00228 { 1000039, "gravitino" },
00229 { 2000001, "susy-d_R" },
00230 { -2000001, "susy-d_R~" },
00231 { 2000002, "susy-u_R" },
00232 { -2000002, "susy-u_R~" },
00233 { 2000003, "susy-s_R" },
00234 { -2000003, "susy-s_R~" },
00235 { 2000004, "susy-c_R" },
00236 { -2000004, "susy-c_R~" },
00237 { 2000005, "susy-b_R" },
00238 { -2000005, "susy-b_R~" },
00239 { 2000006, "susy-t_R" },
00240 { -2000006, "susy-t_R~" },
00241 { 2000011, "susy-e_R^-" },
00242 { -2000011, "susy-e_R^+" },
00243 { 2000012, "susy-nu_eR" },
00244 { -2000012, "susy-nu_eR~" },
00245 { 2000013, "susy-mu_R^-" },
00246 { -2000013, "susy-mu_R^+" },
00247 { 2000014, "susy-nu_muR" },
00248 { -2000014, "susy-nu_muR~" },
00249 { 2000015, "susy-tau_R^-" },
00250 { -2000015, "susy-tau_R^+" },
00251 { 2000016, "susy-nu_tauR" },
00252 { -2000016, "susy-nu_tauR~" },
00253 { 3100021, "V8_tech" },
00254 { -3100021, "V8_tech" },
00255 { 3000111, "pi_tech^0" },
00256 { 3000115, "a_tech^0" },
00257 { 3060111, "pi_tech_22_1" },
00258 { 3160111, "pi_tech_22_8" },
00259 { 3000113, "rho_tech^0" },
00260 { 3130113, "rho_tech_11" },
00261 { 3140113, "rho_tech_12" },
00262 { 3150113, "rho_tech_21" },
00263 { 3160113, "rho_tech_22" },
00264 { 3000211, "pi_tech^+" },
00265 { -3000211, "pi_tech^-" },
00266 { 3000213, "rho_tech^+" },
00267 { -3000213, "rho_tech^-" },
00268 { 3000215, "a_tech^+" },
00269 { -3000215, "a_tech^-" },
00270 { 3000221, "pi'_tech" },
00271 { 3100221, "eta_tech" },
00272 { 3000223, "omega_tech" },
00273 { 4000001, "d*" },
00274 { -4000001, "d*~" },
00275 { 4000002, "u*" },
00276 { -4000002, "u*~" },
00277 { 4000011, "e*^-" },
00278 { -4000011, "e*^+" },
00279 { 4000012, "nu*_e" },
00280 { -4000012, "nu*_e~" },
00281 { 4000039, "G*" },
00282 { -4000039, "G*~" },
00283 { 5100001, "d_L^(1)" },
00284 { -5100001, "d~_L^(1)" },
00285 { 5100002, "u_L^(1)" },
00286 { -5100002, "u~_L^(1)" },
00287 { 5100011, "e_L^(1)-" },
00288 { -5100011, "e_L^(1)+" },
00289 { 5100012, "mu_eL^(1)" },
00290 { -5100012, "mu_eL~^(1)" },
00291 { 6100001, "d_R^(1)" },
00292 { -6100001, "d~_R^(1)" },
00293 { 6100002, "u_R^(1)" },
00294 { -6100002, "u~_R^(1)" },
00295 { 6100011, "e_R^(1)-" },
00296 { -6100011, "e_R^(1)+" },
00297 { 6100012, "mu_eR^(1)" },
00298 { -6100012, "mu_eR~^(1)" },
00299 { 5100021, "g^(1)" },
00300 { 5100022, "gamma^(1)" },
00301 { 5100023, "Z^(1)0" },
00302 { 5100024, "W^(1)+" },
00303 { -5100024, "W^(1)-" },
00304 { 5100025, "h^(1)0" },
00305 { 5100039, "G^(1)" },
00306 { 9900012, "nu_Re" },
00307 { -9900012, "nu_Re~" },
00308 { 9900014, "nu_Rmu" },
00309 { -9900014, "nu_Rmu~" },
00310 { 9900016, "nu_Rtau" },
00311 { -9900016, "nu_Rtau~" },
00312 { 9900023, "Z_R^0" },
00313 { -9900023, "Z_R~^0" },
00314 { 9900024, "W_R^+" },
00315 { -9900024, "W_R^-" },
00316 { 9900041, "H_L^++" },
00317 { -9900041, "H_L^--" },
00318 { 9900042, "H_R^++" },
00319 { -9900042, "H_R^--" },
00320 { 9910113, "rho_diffr^0" },
00321 { 9910211, "pi_diffr^+" },
00322 { -9910211, "pi_diffr^-" },
00323 { 9910223, "omega_diffr" },
00324 { 9910333, "phi_diffr" },
00325 { 9910443, "psi_diffr" },
00326 { 9912112, "n_diffr^0" },
00327 { -9912112, "n_diffr~^0" },
00328 { 9912212, "p_diffr^+" },
00329 { -9912212, "p_diffr~^-" },
00330 { 9920022, "remnant photon" },
00331 { 9922212, "remnant nucleon" },
00332 { -9922212, "remnant nucleon~" },
00333 { 9900441, "cc~[1S08]" },
00334 { 9910441, "cc~[3P08]" },
00335 { 9900443, "cc~[3S18]" },
00336 { 9900551, "bb~[1S08]" },
00337 { 9910551, "bb~[3P08]" },
00338 { 9900553, "bb~[3S18]" },
00339 { 1103, "dd_1" },
00340 { -1103, "dd_1~" },
00341 { 2101, "ud_0" },
00342 { -2101, "ud_0~" },
00343 { 2103, "ud_1" },
00344 { -2103, "ud_1~" },
00345 { 2203, "uu_1" },
00346 { -2203, "uu_1~" },
00347 { 3101, "sd_0" },
00348 { -3101, "sd_0~" },
00349 { 3103, "sd_1" },
00350 { -3103, "sd_1~" },
00351 { 3201, "su_0" },
00352 { -3201, "su_0~" },
00353 { 3203, "su_1" },
00354 { -3203, "su_1~" },
00355 { 3303, "ss_1" },
00356 { -3303, "ss_1~" },
00357 { 4101, "cd_0" },
00358 { -4101, "cd_0~" },
00359 { 4103, "cd_1" },
00360 { -4103, "cd_1~" },
00361 { 4201, "cu_0" },
00362 { -4201, "cu_0~" },
00363 { 4203, "cu_1" },
00364 { -4203, "cu_1~" },
00365 { 4301, "cs_0" },
00366 { -4301, "cs_0~" },
00367 { 4303, "cs_1" },
00368 { -4303, "cs_1~" },
00369 { 4403, "cc_1" },
00370 { -4403, "cc_1~" },
00371 { 5101, "bd_0" },
00372 { -5101, "bd_0~" },
00373 { 5103, "bd_1" },
00374 { -5103, "bd_1~" },
00375 { 5201, "bu_0" },
00376 { -5201, "bu_0~" },
00377 { 5203, "bu_1" },
00378 { -5203, "bu_1~" },
00379 { 5301, "bs_0" },
00380 { -5301, "bs_0~" },
00381 { 5303, "bs_1" },
00382 { -5303, "bs_1~" },
00383 { 5401, "bc_0" },
00384 { -5401, "bc_0~" },
00385 { 5403, "bc_1" },
00386 { -5403, "bc_1~" },
00387 { 5503, "bb_1" },
00388 { -5503, "bb_1~" },
00389 { 6101, "td_0" },
00390 { -6101, "td_0~" },
00391 { 6103, "td_1" },
00392 { -6103, "td_1~" },
00393 { 6201, "tu_0" },
00394 { -6201, "tu_0~" },
00395 { 6203, "tu_1" },
00396 { -6203, "tu_1~" },
00397 { 6301, "ts_0" },
00398 { -6301, "ts_0~" },
00399 { 6303, "ts_1" },
00400 { -6303, "ts_1~" },
00401 { 6401, "tc_0" },
00402 { -6401, "tc_0~" },
00403 { 6403, "tc_1" },
00404 { -6403, "tc_1~" },
00405 { 6501, "tb_0" },
00406 { -6501, "tb_0~" },
00407 { 6503, "tb_1" },
00408 { -6503, "tb_1~" },
00409 { 6603, "tt_1" },
00410 { -6603, "tt_1~" },
00411 { 7101, "b'd_0" },
00412 { -7101, "b'd_0~" },
00413 { 7103, "b'd_1" },
00414 { -7103, "b'd_1~" },
00415 { 7201, "b'u_0" },
00416 { -7201, "b'u_0~" },
00417 { 7203, "b'u_1" },
00418 { -7203, "b'u_1~" },
00419 { 7301, "b's_0" },
00420 { -7301, "b's_0~" },
00421 { 7303, "b's_1" },
00422 { -7303, "b's_1~" },
00423 { 7401, "b'c_0" },
00424 { -7401, "b'c_0~" },
00425 { 7403, "b'c_1" },
00426 { -7403, "b'c_1~" },
00427 { 7501, "b'b_0" },
00428 { -7501, "b'b_0~" },
00429 { 7503, "b'b_1" },
00430 { -7503, "b'b_1~" },
00431 { 7601, "b't_0" },
00432 { -7601, "b't_0~" },
00433 { 7603, "b't_1" },
00434 { -7603, "b't_1~" },
00435 { 7703, "b'b'_1" },
00436 { -7703, "b'b'_1~" },
00437 { 8101, "t'd_0" },
00438 { -8101, "t'd_0~" },
00439 { 8103, "t'd_1" },
00440 { -8103, "t'd_1~" },
00441 { 8201, "t'u_0" },
00442 { -8201, "t'u_0~" },
00443 { 8203, "t'u_1" },
00444 { -8203, "t'u_1~" },
00445 { 8301, "t's_0" },
00446 { -8301, "t's_0~" },
00447 { 8303, "t's_1" },
00448 { -8303, "t's_1~" },
00449 { 8401, "t'c_0" },
00450 { -8401, "t'c_0~" },
00451 { 8403, "t'c_1" },
00452 { -8403, "t'c_1~" },
00453 { 8501, "t'b_0" },
00454 { -8501, "t'b_0~" },
00455 { 8503, "t'b_1" },
00456 { -8503, "t'b_1~" },
00457 { 8601, "t't_0" },
00458 { -8601, "t't_0~" },
00459 { 8603, "t't_1" },
00460 { -8603, "t't_1~" },
00461 { 8701, "t'b'_0" },
00462 { -8701, "t'b'_0~" },
00463 { 8703, "t'b'_1" },
00464 { -8703, "t'b'_1~" },
00465 { 8803, "t't'_1" },
00466 { -8803, "t't'_1~" },
00467 { 111, "pi^0" },
00468 { 9000111, "a_0(980)^0" },
00469 { 10111, "a_0(1450)^0" },
00470 { 100111, "pi(1300)^0" },
00471 { 9010111, "pi(1800)^0" },
00472 { 113, "rho(770)^0" },
00473 { 10113, "b_1(1235)^0" },
00474 { 20113, "a_1(1260)^0" },
00475 { 9000113, "pi_1(1400)^0" },
00476 { 100113, "rho(1450)^0" },
00477 { 9010113, "pi_1(1600)^0" },
00478 { 9020113, "a_1(1640)^0" },
00479 { 30113, "rho(1700)^0" },
00480 { 9030113, "rho(1900)^0" },
00481 { 9040113, "rho(2150)^0" },
00482 { 115, "a_2(1320)^0" },
00483 { 10115, "pi_2(1670)^0" },
00484 { 9000115, "a_2(1700)^0" },
00485 { 9010115, "pi_2(2100)^0" },
00486 { 117, "rho_3(1690)^0" },
00487 { 9000117, "rho_3(1990)^0" },
00488 { 9010117, "rho_3(2250)^0" },
00489 { 119, "a_4(2040)^0" },
00490 { 211, "pi^+" },
00491 { -211, "pi^-" },
00492 { 9000211, "a_0(980)^+" },
00493 { -9000211, "a_0(980)^-" },
00494 { 10211, "a_0(1450)^+" },
00495 { -10211, "a_0(1450)^-" },
00496 { 100211, "pi(1300)^+" },
00497 { -100211, "pi(1300)^-" },
00498 { 9010211, "pi(1800)^+" },
00499 { -9010211, "pi(1800)^-" },
00500 { 213, "rho(770)^+" },
00501 { -213, "rho(770)^-" },
00502 { 10213, "b_1(1235)^+" },
00503 { -10213, "b_1(1235)^-" },
00504 { 20213, "a_1(1260)^+" },
00505 { -20213, "a_1(1260)^-" },
00506 { 9000213, "pi_1(1400)^+" },
00507 { -9000213, "pi_1(1400)^-" },
00508 { 100213, "rho(1450)^+" },
00509 { -100213, "rho(1450)^-" },
00510 { 9010213, "pi_1(1600)^+" },
00511 { -9010213, "pi_1(1600)^-" },
00512 { 9020213, "a_1(1640)^+" },
00513 { -9020213, "a_1(1640)^-" },
00514 { 30213, "rho(1700)^+" },
00515 { -30213, "rho(1700)^-" },
00516 { 9030213, "rho(1900)^+" },
00517 { -9030213, "rho(1900)^-" },
00518 { 9040213, "rho(2150)^+" },
00519 { -9040213, "rho(2150)^-" },
00520 { 215, "a_2(1320)^+" },
00521 { -215, "a_2(1320)^-" },
00522 { 10215, "pi_2(1670)^+" },
00523 { -10215, "pi_2(1670)^-" },
00524 { 9000215, "a_2(1700)^+" },
00525 { -9000215, "a_2(1700)^-" },
00526 { 9010215, "pi_2(2100)^+" },
00527 { -9010215, "pi_2(2100)^-" },
00528 { 217, "rho_3(1690)^+" },
00529 { -217, "rho_3(1690)^-" },
00530 { 9000217, "rho_3(1990)^+" },
00531 { -9000217, "rho_3(1990)^-" },
00532 { 9010217, "rho_3(2250)^+" },
00533 { -9010217, "rho_3(2250)^-" },
00534 { 219, "a_4(2040)^+" },
00535 { -219, "a_4(2040)^-" },
00536 { 221, "eta" },
00537 { 9000221, "f_0(600)" },
00538 { 10221, "f_0(1370)" },
00539 { 9010221, "f_0(980)" },
00540 { 9020221, "eta(1405)" },
00541 { 9030221, "f_0(1500)" },
00542 { 9040221, "eta(1760)" },
00543 { 9050221, "f_0(2020)" },
00544 { 9060221, "f_0(2100)" },
00545 { 9070221, "f_0(2200)" },
00546 { 9080221, "eta(2225)" },
00547 { 100221, "eta(1295)" },
00548 { 331, "eta'(958)" },
00549 { 10331, "f_0(1710)" },
00550 { 100331, "eta(1475)" },
00551 { 223, "omega(782)" },
00552 { 9000223, "f_1(1510)" },
00553 { 9010223, "h_1(1595)" },
00554 { 10223, "h_1(1170)" },
00555 { 20223, "f_1(1285)" },
00556 { 30223, "omega(1650)" },
00557 { 100223, "omega(1420)" },
00558 { 333, "phi(1020)" },
00559 { 10333, "h_1(1380)" },
00560 { 20333, "f_1(1420)" },
00561 { 100333, "phi(1680)" },
00562 { 225, "f_2(1270)" },
00563 { 9000225, "f_2(1430)" },
00564 { 10225, "eta_2(1645)" },
00565 { 9010225, "f_2(1565)" },
00566 { 9020225, "f_2(1640)" },
00567 { 9030225, "f_2(1810)" },
00568 { 9040225, "f_2(1910)" },
00569 { 9050225, "f_2(1950)" },
00570 { 9060225, "f_2(2010)" },
00571 { 9070225, "f_2(2150)" },
00572 { 9080225, "f_2(2300)" },
00573 { 9090225, "f_2(2340)" },
00574 { 335, "f'_2(1525)" },
00575 { 10335, "eta_2(1870)" },
00576 { 227, "omega_3(1670)" },
00577 { 337, "phi_3(1850)" },
00578 { 229, "f_4(2050)" },
00579 { 9000229, "f_J(2220)" },
00580 { 9010229, "f_4(2300)" },
00581 { 311, "K^0" },
00582 { -311, "K~^0" },
00583 { 9000311, "K*_0(800)^0" },
00584 { -9000311, "K*_0(800)~^0" },
00585 { 10311, "K*_0(1430)^0" },
00586 { -10311, "K*_0(1430)~^0" },
00587 { 100311, "K(1460)^0" },
00588 { -100311, "K(1460)~^0" },
00589 { 9010311, "K(1830)^0" },
00590 { -9010311, "K(1830)~^0" },
00591 { 9020311, "K*_0(1950)^0" },
00592 { -9020311, "K*_0(1950)~^0" },
00593 { 321, "K^+" },
00594 { -321, "K^-" },
00595 { 9000321, "K*_0(800)^+" },
00596 { -9000321, "K*_0(800)^-" },
00597 { 10321, "K*_0(1430)^+" },
00598 { -10321, "K*_0(1430)^-" },
00599 { 100321, "K(1460)^+" },
00600 { -100321, "K(1460)^-" },
00601 { 9010321, "K(1830)^+" },
00602 { -9010321, "K(1830)^-" },
00603 { 9020321, "K*_0(1950)^+" },
00604 { -9020321, "K*_0(1950)^-" },
00605 { 313, "K*(892)^0" },
00606 { -313, "K*(892)~^0" },
00607 { 10313, "K_1(1270)^0" },
00608 { -10313, "K_1(1270)~^0" },
00609 { 20313, "K_1(1400)^0" },
00610 { -20313, "K_1(1400)~^0" },
00611 { 30313, "K*(1680)^0" },
00612 { -30313, "K*(1680)~^0" },
00613 { 100313, "K*(1410)^0" },
00614 { -100313, "K*(1410)~^0" },
00615 { 9000313, "K_1(1650)^0" },
00616 { -9000313, "K_1(1650)~^0" },
00617 { 323, "K*(892)^+" },
00618 { -323, "K*(892)^-" },
00619 { 10323, "K_1(1270)^+" },
00620 { -10323, "K_1(1270)^-" },
00621 { 20323, "K_1(1400)^+" },
00622 { -20323, "K_1(1400)^-" },
00623 { 30323, "K*(1680)^+" },
00624 { -30323, "K*(1680)^-" },
00625 { 100323, "K*(1410)^+" },
00626 { -100323, "K*(1410)^-" },
00627 { 9000323, "K_1(1650)^+" },
00628 { -9000323, "K_1(1650)^-" },
00629 { 315, "K*_2(1430)^0" },
00630 { -315, "K*_2(1430)~^0" },
00631 { 9000315, "K_2(1580)^0" },
00632 { -9000315, "K_2(1580)~^0" },
00633 { 10315, "K_2(1770)^0" },
00634 { -10315, "K_2(1770)~^0" },
00635 { 9010315, "K*_2(1980)^0" },
00636 { -9010315, "K*_2(1980)~^0" },
00637 { 9020315, "K_2(2250)^0" },
00638 { -9020315, "K_2(2250)~^0" },
00639 { 20315, "K_2(1820)^0" },
00640 { -20315, "K_2(1820)~^0" },
00641 { 325, "K*_2(1430)^+" },
00642 { -325, "K*_2(1430)^-" },
00643 { 9000325, "K_2(1580)^+" },
00644 { -9000325, "K_2(1580)^-" },
00645 { 10325, "K_2(1770)^+" },
00646 { -10325, "K_2(1770)^-" },
00647 { 9010325, "K*_2(1980)^+" },
00648 { -9010325, "K*_2(1980)^-" },
00649 { 9020325, "K_2(2250)^+" },
00650 { -9020325, "K_2(2250)^-" },
00651 { 20325, "K_2(1820)^+" },
00652 { -20325, "K_2(1820)^-" },
00653 { 100325, "K_2(1980)^+" },
00654 { -100325, "K_2(1980)^-" },
00655 { 317, "K*_3(1780)^0" },
00656 { -317, "K*_3(1780)~^0" },
00657 { 9010317, "K_3(2320)^0" },
00658 { -9010317, "K_3(2320)~^0" },
00659 { 327, "K*_3(1780)^+" },
00660 { -327, "K*_3(1780)^-" },
00661 { 9010327, "K_3(2320)^+" },
00662 { -9010327, "K_3(2320)^-" },
00663 { 319, "K*_4(2045)^0" },
00664 { -319, "K*_4(2045)~^0" },
00665 { 9000319, "K_4(2500)^0" },
00666 { -9000319, "K_4(2500)~^0" },
00667 { 329, "K*_4(2045)^+" },
00668 { -329, "K*_4(2045)^-" },
00669 { 9000329, "K_4(2500)^+" },
00670 { -9000329, "K_4(2500)^-" },
00671 { 411, "D^+" },
00672 { -411, "D^-" },
00673 { 10411, "D*_0(2400)^+" },
00674 { -10411, "D*_0(2400)^-" },
00675 { 100411, "D(2S)^+" },
00676 { -100411, "D(2S)^-" },
00677 { 413, "D*(2010)^+" },
00678 { -413, "D*(2010)^-" },
00679 { 10413, "D_1(2420)^+" },
00680 { -10413, "D_1(2420)^-" },
00681 { 20413, "D_1(H)^+" },
00682 { -20413, "D_1(H)^-" },
00683 { 100413, "D*(2S)^+" },
00684 { -100413, "D*(2S)^+" },
00685 { 415, "D*_2(2460)^+" },
00686 { -415, "D*_2(2460)^-" },
00687 { 421, "D^0" },
00688 { -421, "D~^0" },
00689 { 10421, "D*_0(2400)^0" },
00690 { -10421, "D*_0(2400)~^0" },
00691 { 100421, "D(2S)^0" },
00692 { -100421, "D(2S)~^0" },
00693 { 423, "D*(2007)^0" },
00694 { -423, "D*(2007)~^0" },
00695 { 10423, "D_1(2420)^0" },
00696 { -10423, "D_1(2420)~^0" },
00697 { 20423, "D_1(2430)^0" },
00698 { -20423, "D_1(2430)~^0" },
00699 { 100423, "D*(2S)^0" },
00700 { -100423, "D*(2S)~^0" },
00701 { 425, "D*_2(2460)^0" },
00702 { -425, "D*_2(2460)~^0" },
00703 { 431, "D_s^+" },
00704 { -431, "D_s^-" },
00705 { 10431, "D*_s0(2317)^+" },
00706 { -10431, "D*_s0(2317)^-" },
00707 { 433, "D*_s^+" },
00708 { -433, "D*_s^-" },
00709 { 10433, "D_s1(2536)^+" },
00710 { -10433, "D_s1(2536)^-" },
00711 { 20433, "D_s1(2460)^+" },
00712 { -20433, "D_s1(2460)^-" },
00713 { 435, "D*_s2(2573)^+" },
00714 { -435, "D*_s2(2573)^-" },
00715 { 441, "eta_c(1S)" },
00716 { 10441, "chi_c0(1P)" },
00717 { 100441, "eta_c(2S)" },
00718 { 443, "J/psi(1S)" },
00719 { 9000443, "psi(4040)" },
00720 { 10443, "hc(1P)" },
00721 { 9010443, "psi(4160)" },
00722 { 20443, "chi_c1(1P)" },
00723 { 9020443, "psi(4415)" },
00724 { 30443, "psi(3770)" },
00725 { 100443, "psi(2S)" },
00726 { 445, "chi_c2(1P)" },
00727 { 100445, "chi_c2(2P)" },
00728 { 511, "B^0" },
00729 { -511, "B~^0" },
00730 { 10511, "B*_0^0" },
00731 { -10511, "B*_0~^0" },
00732 { 513, "B*^0" },
00733 { -513, "B*~^0" },
00734 { 10513, "B_1(L)^0" },
00735 { -10513, "B_1(L)~^0" },
00736 { 20513, "B_1(H)^0" },
00737 { -20513, "B_1(H)~^0" },
00738 { 515, "B*_2^0" },
00739 { -515, "B*_2~^0" },
00740 { 521, "B^+" },
00741 { -521, "B^-" },
00742 { 10521, "B*_0^+" },
00743 { -10521, "B*_0^-" },
00744 { 523, "B*^+" },
00745 { -523, "B*^-" },
00746 { 10523, "B_1(L)^+" },
00747 { -10523, "B_1(L)^-" },
00748 { 20523, "B_1(H)^+" },
00749 { -20523, "B_1(H)^-" },
00750 { 525, "B*_2^+" },
00751 { -525, "B*_2^-" },
00752 { 531, "B_s^0" },
00753 { -531, "B_s~^0" },
00754 { 10531, "B*_s0^0" },
00755 { -10531, "B*_s0~^0" },
00756 { 533, "B*_s^0" },
00757 { -533, "B*_s~^0" },
00758 { 10533, "B_s1(L)^0" },
00759 { -10533, "B_s1(L)~^0" },
00760 { 20533, "B_s1(H)^0" },
00761 { -20533, "B_s1(H)~^0" },
00762 { 535, "B*_s2^0" },
00763 { -535, "B*_s2~^0" },
00764 { 541, "B_c^+" },
00765 { -541, "B_c^-" },
00766 { 10541, "B*_c0^+" },
00767 { -10541, "B*_c0^-" },
00768 { 543, "B*_c^+" },
00769 { -543, "B*_c^-" },
00770 { 10543, "B_c1(L)^+" },
00771 { -10543, "B_c1(L)^-" },
00772 { 20543, "B_c1(H)^+" },
00773 { -20543, "B_c1(H)^-" },
00774 { 545, "B*_c2^+" },
00775 { -545, "B*_c2^-" },
00776 { 551, "eta_b(1S)" },
00777 { 10551, "chi_b0(1P)" },
00778 { 100551, "eta_b(2S)" },
00779 { 110551, "chi_b0(2P)" },
00780 { 200551, "eta_b(3S)" },
00781 { 210551, "chi_b0(3P)" },
00782 { 553, "Upsilon(1S)" },
00783 { 9000553, "Upsilon(10860)" },
00784 { 10553, "h_b(1P)" },
00785 { 9010553, "Upsilon(11020)" },
00786 { 20553, "chi_b1(1P)" },
00787 { 9020553, "Upsilon(7S)" },
00788 { 30553, "Upsilon_1(1D)" },
00789 { 100553, "Upsilon(2S)" },
00790 { 110553, "h_b(2P)" },
00791 { 120553, "chi_b1(2P)" },
00792 { 130553, "Upsilon_1(2D)" },
00793 { 200553, "Upsilon(3S)" },
00794 { 210553, "h_b(3P)" },
00795 { 220553, "chi_b1(3P)" },
00796 { 300553, "Upsilon(4S)" },
00797 { 555, "chi_b2(1P)" },
00798 { 10555, "eta_b2(1D)" },
00799 { 20555, "Upsilon_2(1D)" },
00800 { 100555, "chi_b2(2P)" },
00801 { 110555, "eta_b2(2D)" },
00802 { 120555, "Upsilon_2(2D)" },
00803 { 200555, "chi_b2(3P)" },
00804 { 557, "Upsilon_3(1D)" },
00805 { 100557, "Upsilon_3(2D)" },
00806 { 611, "T^+" },
00807 { -611, "T^-" },
00808 { 613, "T*^+" },
00809 { -613, "T*^-" },
00810 { 621, "T^0" },
00811 { -621, "T~^0" },
00812 { 623, "T*^0" },
00813 { -623, "T*~^0" },
00814 { 631, "T_s^+" },
00815 { -631, "T_s^-" },
00816 { 633, "T*_s^+" },
00817 { -633, "T*_s^-" },
00818 { 641, "T_c^0" },
00819 { -641, "T_c~^0" },
00820 { 643, "T*_c^0" },
00821 { -643, "T*_c~^0" },
00822 { 651, "T_b^+" },
00823 { -651, "T_b^-" },
00824 { 653, "T*_b^+" },
00825 { -653, "T*_b^-" },
00826 { 661, "eta_t" },
00827 { 663, "theta" },
00828 { 711, "L^0" },
00829 { -711, "L~^0" },
00830 { 713, "L*^0" },
00831 { -713, "L*~^0" },
00832 { 721, "L^-" },
00833 { -721, "L^+" },
00834 { 723, "L*^-" },
00835 { -723, "L*^+" },
00836 { 731, "L_s^0" },
00837 { -731, "L_s~^0" },
00838 { 733, "L*_s^0" },
00839 { -733, "L*_s~^0" },
00840 { 741, "L_c^-" },
00841 { -741, "L_c^+" },
00842 { 743, "L*_c^-" },
00843 { -743, "L*_c^+" },
00844 { 751, "L_b^0" },
00845 { -751, "L_b~^0" },
00846 { 753, "L*_b^0" },
00847 { -753, "L*_b~^0" },
00848 { 761, "L_t^-" },
00849 { -761, "L_t^+" },
00850 { 763, "L*_t^-" },
00851 { -763, "L*_t^+" },
00852 { 771, "eta_l" },
00853 { 773, "theta_l" },
00854 { 811, "H^+" },
00855 { -811, "H^-" },
00856 { 813, "H*^+" },
00857 { -813, "H*^-" },
00858 { 821, "H^0" },
00859 { -821, "H~^0" },
00860 { 823, "H*^0" },
00861 { -823, "H*~^0" },
00862 { 831, "H_s^+" },
00863 { -831, "H_s^-" },
00864 { 833, "H*_s^+" },
00865 { -833, "H*_s^-" },
00866 { 841, "H_c^0" },
00867 { -841, "H_c~^0" },
00868 { 843, "H*_c^0" },
00869 { -843, "H*_c~^0" },
00870 { 851, "H_b^+" },
00871 { -851, "H_b^-" },
00872 { 853, "H*_b^+" },
00873 { -853, "H*_b^-" },
00874 { 861, "H_t^0" },
00875 { -861, "H_t~^0" },
00876 { 863, "H*_t^0" },
00877 { -863, "H*_t~^0" },
00878 { 871, "H_l^+" },
00879 { -871, "H_l^-" },
00880 { 873, "H*_l^+" },
00881 { -873, "H*_l^-" },
00882 { 881, "eta_h" },
00883 { 883, "theta_H" },
00884 { 2112, "n^0" },
00885 { -2112, "n~^0" },
00886 { 2212, "p^+" },
00887 { -2212, "p~^-" },
00888 { 12212, "N(1440)^+"},
00889 { 12112, "N(1440)^0"},
00890 { 22212, "N(1535)^+"},
00891 { 22112, "N(1535)^0"},
00892 { 32212, "N(1650)^+"},
00893 { 32112, "N(1650)^0"},
00894 { 42212, "N(1710)^+"},
00895 { 42112, "N(1710)^0"},
00896 { 1214, "N(1520)^0"},
00897 { 2124, "N(1520)^+"},
00898 { 21214, "N(1700)^0"},
00899 { 22124, "N(1700)^+"},
00900 { 31214, "N(1720)^0"},
00901 { 32124, "N(1720)^+"},
00902 { 2116, "N(1675)^0"},
00903 { 2216, "N(1675)^+"},
00904 { 12116, "N(1680)^0"},
00905 { 12216, "N(1680)^+"},
00906 { 1218, "N(2190)^0"},
00907 { 2128, "N(2190)^+" },
00908 { 1114, "Delta^-" },
00909 { -1114, "Delta~^+" },
00910 { 2114, "Delta^0" },
00911 { -2114, "Delta~^0" },
00912 { 2214, "Delta^+" },
00913 { -2214, "Delta~^-" },
00914 { 2224, "Delta^++" },
00915 { -2224, "Delta~^--" },
00916 { 31114, "Delta(1600)^-" },
00917 { 32114, "Delta(1600)^0" },
00918 { 32214, "Delta(1600)^+" },
00919 { 32224, "Delta(1600)^++" },
00920 { 1112, "Delta(1620)^-" },
00921 { 1212, "Delta(1620)^0" },
00922 { 2122, "Delta(1620)^+" },
00923 { 2222, "Delta(1620)^++" },
00924 { 11114, "Delta(1700)^-" },
00925 { 12114, "Delta(1700)^0" },
00926 { 12214, "Delta(1700)^+" },
00927 { 12224, "Delta(1700)^++" },
00928 { 1116, "Delta(1905)^-" },
00929 { 1216, "Delta(1905)^0" },
00930 { 2126, "Delta(1905)^+" },
00931 { 2226, "Delta(1905)^++" },
00932 { 21112, "Delta(1910)^-" },
00933 { 21212, "Delta(1910)^0" },
00934 { 22122, "Delta(1910)^+" },
00935 { 22222, "Delta(1910)^++" },
00936 { 21114, "Delta(1920)^-" },
00937 { 22114, "Delta(1920)^0" },
00938 { 22214, "Delta(1920)^+" },
00939 { 22224, "Delta(1920)^++" },
00940 { 11116, "Delta(1930)^-" },
00941 { 11216, "Delta(1930)^0" },
00942 { 12126, "Delta(1930)^+" },
00943 { 12226, "Delta(1930)^++" },
00944 { 1118, "Delta(1950)^-" },
00945 { 2118, "Delta(1950)^0" },
00946 { 2218, "Delta(1950)^+" },
00947 { 2228, "Delta(1950)^++" },
00948 { 3122, "Lambda^0" },
00949 { -3122, "Lambda~^0" },
00950 { 13122, "Lambda(1405)^0" },
00951 { -13122, "Lambda~(1405)^0" },
00952 { 23122, "Lambda(1600)^0" },
00953 { -23122, "Lambda~(1600)^0" },
00954 { 33122, "Lambda(1670)^0" },
00955 { -33122, "Lambda~(1670)^0" },
00956 { 43122, "Lambda(1800)^0" },
00957 { -43122, "Lambda~(1800)^0" },
00958 { 53122, "Lambda(1810)^0" },
00959 { -53122, "Lambda~(1810)^0" },
00960 { 3124, "Lambda(1520)^0" },
00961 { -3124, "Lambda~(1520)^0" },
00962 { 13124, "Lambda(1690)^0" },
00963 { -13124, "Lambda~(1690)^0" },
00964 { 23124, "Lambda(1890)^0" },
00965 { -23124, "Lambda~(1890)^0" },
00966 { 3126, "Lambda(1820)^0" },
00967 { -3126, "Lambda~(1820)^0" },
00968 { 13126, "Lambda(1830)^0" },
00969 { -13126, "Lambda~(1830)^0" },
00970 { 23126, "Lambda(2110)^0" },
00971 { -23126, "Lambda~(2110)^0" },
00972 { 3128, "Lambda(2100)^0" },
00973 { -3128, "Lambda~(2100)^0" },
00974 { 3112, "Sigma^-" },
00975 { -3112, "Sigma~^+" },
00976 { 3212, "Sigma^0" },
00977 { -3212, "Sigma~^0" },
00978 { 3222, "Sigma^+" },
00979 { -3222, "Sigma~^-" },
00980 { 13222, "Sigma(1660)^+" },
00981 { -13222, "Sigma~(1660)^+" },
00982 { 13212, "Sigma(1660)^0" },
00983 { -13212, "Sigma~(1660)^0" },
00984 { 13112, "Sigma(1660)^-" },
00985 { -13112, "Sigma~(1660)^-" },
00986 { 23112, "Sigma(1750)^-" },
00987 { -23112, "Sigma~(1750)^-" },
00988 { 23212, "Sigma(1750)^0" },
00989 { -23212, "Sigma~(1750)^0" },
00990 { 23222, "Sigma(1750)^+" },
00991 { -23222, "Sigma~(1750)^+" },
00992 { 3114, "Sigma*^-" },
00993 { -3114, "Sigma*~^+" },
00994 { 3214, "Sigma*^0" },
00995 { -3214, "Sigma*~^0" },
00996 { 3224, "Sigma*^+" },
00997 { -3224, "Sigma*~^-" },
00998 { 13224, "Sigma(1670)^+" },
00999 { -13224, "Sigma~(1670)^+" },
01000 { 13214, "Sigma(1670)^0" },
01001 { -13214, "Sigma~(1670)^0" },
01002 { 13114, "Sigma(1670)^-" },
01003 { -13114, "Sigma~(1670)^-" },
01004 { 23224, "Sigma(1940)^+" },
01005 { -23224, "Sigma~(1940)^+" },
01006 { 23214, "Sigma(1940)^0" },
01007 { -23214, "Sigma~(1940)^0" },
01008 { 23114, "Sigma(1940)^-" },
01009 { -23114, "Sigma~(1940)^-" },
01010 { 3226, "Sigma(1775)^+" },
01011 { -3226, "Sigma~(1775)^+" },
01012 { 3216, "Sigma(1775)^0" },
01013 { -3216, "Sigma~(1775)^0" },
01014 { 3116, "Sigma(1775)^-" },
01015 { -3116, "Sigma~(1775)^-" },
01016 { 13226, "Sigma(1915)^+" },
01017 { -13226, "Sigma~(1915)^+" },
01018 { 13216, "Sigma(1915)^0" },
01019 { -13216, "Sigma~(1915)^0" },
01020 { 13116, "Sigma(1915)^-" },
01021 { -13116, "Sigma~(1915)^-" },
01022 { 3228, "Sigma(2030)^+" },
01023 { -3228, "Sigma~(2030)^+" },
01024 { 3218, "Sigma(2030)^0" },
01025 { -3218, "Sigma~(2030)^0" },
01026 { 3118, "Sigma(2030)^-" },
01027 { -3118, "Sigma~(2030)^-" },
01028 { 3312, "Xi^-" },
01029 { -3312, "Xi~^+" },
01030 { 3322, "Xi^0" },
01031 { -3322, "Xi~^0" },
01032 { 3314, "Xi*^-" },
01033 { -3314, "Xi*~^+" },
01034 { 3324, "Xi*^0" },
01035 { -3324, "Xi*~^0" },
01036 { 13314, "Xi(1820)^-" },
01037 { -13314, "Xi(1820)~^+" },
01038 { 13324, "Xi(1820)^0" },
01039 { -13324, "Xi(1820)~^0" },
01040 { 3334, "Omega^-" },
01041 { -3334, "Omega~^+" },
01042 { 4112, "Sigma_c^0" },
01043 { -4112, "Sigma_c~^0" },
01044 { 4114, "Sigma*_c^0" },
01045 { -4114, "Sigma*_c~^0" },
01046 { 4122, "Lambda_c^+" },
01047 { -4122, "Lambda_c~^-" },
01048 { 14122, "Lambda_c(2593)^+" },
01049 { -14122, "Lambda_c~(2593)^-" },
01050 { 14124, "Lambda_c(2625)^+" },
01051 { -14124, "Lambda_c~(2625)^-" },
01052 { 4132, "Xi_c^0" },
01053 { -4132, "Xi_c~^0" },
01054 { 4212, "Sigma_c^+" },
01055 { -4212, "Sigma_c~^-" },
01056 { 4214, "Sigma*_c^+" },
01057 { -4214, "Sigma*_c~^-" },
01058 { 4222, "Sigma_c^++" },
01059 { -4222, "Sigma_c~^--" },
01060 { 4224, "Sigma*_c^++" },
01061 { -4224, "Sigma*_c~^--" },
01062 { 4232, "Xi_c^+" },
01063 { -4232, "Xi_c~^-" },
01064 { 4312, "Xi'_c^0" },
01065 { -4312, "Xi'_c~^0" },
01066 { 4314, "Xi*_c^0" },
01067 { -4314, "Xi*_c~^0" },
01068 { 4322, "Xi'_c^+" },
01069 { -4322, "Xi'_c~^-" },
01070 { 4324, "Xi*_c^+" },
01071 { -4324, "Xi*_c~^-" },
01072 { 4332, "Omega_c^0" },
01073 { -4332, "Omega_c~^0" },
01074 { 4334, "Omega*_c^0" },
01075 { -4334, "Omega*_c~^0" },
01076 { 4412, "Xi_cc^+" },
01077 { -4412, "Xi_cc~^-" },
01078 { 4414, "Xi*_cc^+" },
01079 { -4414, "Xi*_cc~^-" },
01080 { 4422, "Xi_cc^++" },
01081 { -4422, "Xi_cc~^--" },
01082 { 4424, "Xi*_cc^++" },
01083 { -4424, "Xi*_cc~^--" },
01084 { 4432, "Omega_cc^+" },
01085 { -4432, "Omega_cc~^-" },
01086 { 4434, "Omega*_cc^+" },
01087 { -4434, "Omega*_cc~^-" },
01088 { 4444, "Omega*_ccc^++" },
01089 { -4444, "Omega*_ccc~^--" },
01090 { 5112, "Sigma_b^-" },
01091 { -5112, "Sigma_b~^+" },
01092 { 5114, "Sigma*_b^-" },
01093 { -5114, "Sigma*_b~^+" },
01094 { 5122, "Lambda_b^0" },
01095 { -5122, "Lambda_b~^0" },
01096 { 5132, "Xi_b^-" },
01097 { -5132, "Xi_b~^+" },
01098 { 5142, "Xi_bc^0" },
01099 { -5142, "Xi_bc~^0" },
01100 { 5212, "Sigma_b^0" },
01101 { -5212, "Sigma_b~^0" },
01102 { 5214, "Sigma*_b^0" },
01103 { -5214, "Sigma*_b~^0" },
01104 { 5222, "Sigma_b^+" },
01105 { -5222, "Sigma_b~^-" },
01106 { 5224, "Sigma*_b^+" },
01107 { -5224, "Sigma*_b~^-" },
01108 { 5232, "Xi_b^0" },
01109 { -5232, "Xi_b~^0" },
01110 { 5242, "Xi_bc^+" },
01111 { -5242, "Xi_bc~^-" },
01112 { 5312, "Xi'_b^-" },
01113 { -5312, "Xi'_b~^+" },
01114 { 5314, "Xi*_b^-" },
01115 { -5314, "Xi*_b~^+" },
01116 { 5322, "Xi'_b^0" },
01117 { -5322, "Xi'_b~^0" },
01118 { 5324, "Xi*_b^0" },
01119 { -5324, "Xi*_b~^0" },
01120 { 5332, "Omega_b^-" },
01121 { -5332, "Omega_b~^+" },
01122 { 5334, "Omega*_b^-" },
01123 { -5334, "Omega*_b~^+" },
01124 { 5342, "Omega_bc^0" },
01125 { -5342, "Omega_bc~^0" },
01126 { 5412, "Xi'_bc^0" },
01127 { -5412, "Xi'_bc~^0" },
01128 { 5414, "Xi*_bc^0" },
01129 { -5414, "Xi*_bc~^0" },
01130 { 5422, "Xi'_bc^+" },
01131 { -5422, "Xi'_bc~^-" },
01132 { 5424, "Xi*_bc^+" },
01133 { -5424, "Xi*_bc~^-" },
01134 { 5432, "Omega'_bc^0" },
01135 { -5432, "Omega'_bc~^0" },
01136 { 5434, "Omega*_bc^0" },
01137 { -5434, "Omega*_bc~^0" },
01138 { 5442, "Omega_bcc^+" },
01139 { -5442, "Omega_bcc~^-" },
01140 { 5444, "Omega*_bcc^+" },
01141 { -5444, "Omega*_bcc~^-" },
01142 { 5512, "Xi_bb^-" },
01143 { -5512, "Xi_bb~^+" },
01144 { 5514, "Xi*_bb^-" },
01145 { -5514, "Xi*_bb~^+" },
01146 { 5522, "Xi_bb^0" },
01147 { -5522, "Xi_bb~^0" },
01148 { 5524, "Xi*_bb^0" },
01149 { -5524, "Xi*_bb~^0" },
01150 { 5532, "Omega_bb^-" },
01151 { -5532, "Omega_bb~^+" },
01152 { 5534, "Omega*_bb^-" },
01153 { -5534, "Omega*_bb~^+" },
01154 { 5542, "Omega_bbc^0" },
01155 { -5542, "Omega_bbc~^0" },
01156 { 5544, "Omega*_bbc^0" },
01157 { -5544, "Omega*_bbc~^0" },
01158 { 5554, "Omega*_bbb^-" },
01159 { -5554, "Omega*_bbb~^+" },
01160 { 6112, "Sigma_t^0" },
01161 { -6112, "Sigma_t~^0" },
01162 { 6114, "Sigma*_t^0" },
01163 { -6114, "Sigma*_t~^0" },
01164 { 6122, "Lambda_t^+" },
01165 { -6122, "Lambda_t~^-" },
01166 { 6132, "Xi_t^0" },
01167 { -6132, "Xi_t~^0" },
01168 { 6142, "Xi_tc^+" },
01169 { -6142, "Xi_tc~^-" },
01170 { 6152, "Xi_tb^0" },
01171 { -6152, "Xi_tb~^0" },
01172 { 6212, "Sigma_t^+" },
01173 { -6212, "Sigma_t~^-" },
01174 { 6214, "Sigma*_t^+" },
01175 { -6214, "Sigma*_t~^-" },
01176 { 6222, "Sigma_t^++" },
01177 { -6222, "Sigma_t~^--" },
01178 { 6224, "Sigma*_t^++" },
01179 { -6224, "Sigma*_t~^--" },
01180 { 6232, "Xi_t^+" },
01181 { -6232, "Xi_t~^-" },
01182 { 6242, "Xi_tc^++" },
01183 { -6242, "Xi_tc~^--" },
01184 { 6252, "Xi_tb^+" },
01185 { -6252, "Xi_tb~^-" },
01186 { 6312, "Xi'_t^0" },
01187 { -6312, "Xi'_t~^0" },
01188 { 6314, "Xi*_t^0" },
01189 { -6314, "Xi*_t~^0" },
01190 { 6322, "Xi'_t^+" },
01191 { -6322, "Xi'_t~^-" },
01192 { 6324, "Xi*_t^+" },
01193 { -6324, "Xi*_t~^-" },
01194 { 6332, "Omega_t^0" },
01195 { -6332, "Omega_t~^0" },
01196 { 6334, "Omega*_t^0" },
01197 { -6334, "Omega*_t~^0" },
01198 { 6342, "Omega_tc^+" },
01199 { -6342, "Omega_tc~^-" },
01200 { 6352, "Omega_tb^0" },
01201 { -6352, "Omega_tb~^0" },
01202 { 6412, "Xi'_tc^+" },
01203 { -6412, "Xi'_tc~^-" },
01204 { 6414, "Xi*_tc^+" },
01205 { -6414, "Xi*_tc~^-" },
01206 { 6422, "Xi'_tc^++" },
01207 { -6422, "Xi'_tc~^--" },
01208 { 6424, "Xi*_tc^++" },
01209 { -6424, "Xi*_tc~^--" },
01210 { 6432, "Omega'_tc^+" },
01211 { -6432, "Omega'_tc~^-" },
01212 { 6434, "Omega*_tc^+" },
01213 { -6434, "Omega*_tc~^-" },
01214 { 6442, "Omega_tcc^++" },
01215 { -6442, "Omega_tcc~^--" },
01216 { 6444, "Omega*_tcc^++" },
01217 { -6444, "Omega*_tcc~^--" },
01218 { 6452, "Omega_tbc^+" },
01219 { -6452, "Omega_tbc~^-" },
01220 { 6512, "Xi'_tb^0" },
01221 { -6512, "Xi'_tb~^0" },
01222 { 6514, "Xi*_tb^0" },
01223 { -6514, "Xi*_tb~^0" },
01224 { 6522, "Xi'_tb^+" },
01225 { -6522, "Xi'_tb~^-" },
01226 { 6524, "Xi*_tb^+" },
01227 { -6524, "Xi*_tb~^-" },
01228 { 6532, "Omega'_tb^0" },
01229 { -6532, "Omega'_tb~^0" },
01230 { 6534, "Omega*_tb^0" },
01231 { -6534, "Omega*_tb~^0" },
01232 { 6542, "Omega'_tbc^+" },
01233 { -6542, "Omega'_tbc~^-" },
01234 { 6544, "Omega*_tbc^+" },
01235 { -6544, "Omega*_tbc~^-" },
01236 { 6552, "Omega_tbb^0" },
01237 { -6552, "Omega_tbb~^0" },
01238 { 6554, "Omega*_tbb^0" },
01239 { -6554, "Omega*_tbb~^0" },
01240 { 6612, "Xi_tt^+" },
01241 { -6612, "Xi_tt~^-" },
01242 { 6614, "Xi*_tt^+" },
01243 { -6614, "Xi*_tt~^-" },
01244 { 6622, "Xi_tt^++" },
01245 { -6622, "Xi_tt~^--" },
01246 { 6624, "Xi*_tt^++" },
01247 { -6624, "Xi*_tt~^--" },
01248 { 6632, "Omega_tt^+" },
01249 { -6632, "Omega_tt~^-" },
01250 { 6634, "Omega*_tt^+" },
01251 { -6634, "Omega*_tt~^-" },
01252 { 6642, "Omega_ttc^++" },
01253 { -6642, "Omega_ttc~^--" },
01254 { 6644, "Omega*_ttc^++" },
01255 { -6644, "Omega*_ttc~^--" },
01256 { 6652, "Omega_ttb^+" },
01257 { -6652, "Omega_ttb~^-" },
01258 { 6654, "Omega*_ttb^+" },
01259 { -6654, "Omega*_ttb~^-" },
01260 { 6664, "Omega*_ttt^++" },
01261 { -6664, "Omega*_ttt~^--" },
01262 { 7112, "Sigma_b'^-" },
01263 { -7112, "Sigma_b'~^+" },
01264 { 7114, "Sigma*_b'^-" },
01265 { -7114, "Sigma*_b'~^+" },
01266 { 7122, "Lambda_b'^0" },
01267 { -7122, "Lambda_b'~^0" },
01268 { 7132, "Xi_b'^-" },
01269 { -7132, "Xi_b'~^+" },
01270 { 7142, "Xi_b'c^0" },
01271 { -7142, "Xi_b'c~^0" },
01272 { 7152, "Xi_b'b^-" },
01273 { -7152, "Xi_b'b~^+" },
01274 { 7162, "Xi_b't^0" },
01275 { -7162, "Xi_b't~^0" },
01276 { 7212, "Sigma_b'^0" },
01277 { -7212, "Sigma_b'~^0" },
01278 { 7214, "Sigma*_b'^0" },
01279 { -7214, "Sigma*_b'~^0" },
01280 { 7222, "Sigma_b'^+" },
01281 { -7222, "Sigma_b'~^-" },
01282 { 7224, "Sigma*_b'^+" },
01283 { -7224, "Sigma*_b'~^-" },
01284 { 7232, "Xi_b'^0" },
01285 { -7232, "Xi_b'~^0" },
01286 { 7242, "Xi_b'c^+" },
01287 { -7242, "Xi_b'c~^-" },
01288 { 7252, "Xi_b'b^0" },
01289 { -7252, "Xi_b'b~^0" },
01290 { 7262, "Xi_b't^+" },
01291 { -7262, "Xi_b't~^-" },
01292 { 7312, "Xi'_b'^-" },
01293 { -7312, "Xi'_b'~^+" },
01294 { 7314, "Xi*_b'^-" },
01295 { -7314, "Xi*_b'~^+" },
01296 { 7322, "Xi'_b'^0" },
01297 { -7322, "Xi'_b'~^0" },
01298 { 7324, "Xi*_b'^0" },
01299 { -7324, "Xi*_b'~^0" },
01300 { 7332, "Omega'_b'^-" },
01301 { -7332, "Omega'_b'~^+" },
01302 { 7334, "Omega*_b'^-" },
01303 { -7334, "Omega*_b'~^+" },
01304 { 7342, "Omega_b'c^0" },
01305 { -7342, "Omega_b'c~^0" },
01306 { 7352, "Omega_b'b^-" },
01307 { -7352, "Omega_b'b~^+" },
01308 { 7362, "Omega_b't^0" },
01309 { -7362, "Omega_b't~^0" },
01310 { 7412, "Xi'_b'c^0" },
01311 { -7412, "Xi'_b'c~^0" },
01312 { 7414, "Xi*_b'c^0" },
01313 { -7414, "Xi*_b'c~^0" },
01314 { 7422, "Xi'_b'c^+" },
01315 { -7422, "Xi'_b'c~^-" },
01316 { 7424, "Xi*_b'c^+" },
01317 { -7424, "Xi*_b'c~^-" },
01318 { 7432, "Omega'_b'c^0" },
01319 { -7432, "Omega'_b'c~^0" },
01320 { 7434, "Omega*_b'c^0" },
01321 { -7434, "Omega*_b'c~^0" },
01322 { 7442, "Omega'_b'cc^+" },
01323 { -7442, "Omega'_b'cc~^-" },
01324 { 7444, "Omega*_b'cc^+" },
01325 { -7444, "Omega*_b'cc~^-" },
01326 { 7452, "Omega_b'bc^0" },
01327 { -7452, "Omega_b'bc~^0" },
01328 { 7462, "Omega_b'tc^+" },
01329 { -7462, "Omega_b'tc~^-" },
01330 { 7512, "Xi'_b'b^-" },
01331 { -7512, "Xi'_b'b~^+" },
01332 { 7514, "Xi*_b'b^-" },
01333 { -7514, "Xi*_b'b~^+" },
01334 { 7522, "Xi'_b'b^0" },
01335 { -7522, "Xi'_b'b~^0" },
01336 { 7524, "Xi*_b'b^0" },
01337 { -7524, "Xi*_b'b~^0" },
01338 { 7532, "Omega'_b'b^-" },
01339 { -7532, "Omega'_b'b~^+" },
01340 { 7534, "Omega*_b'b^-" },
01341 { -7534, "Omega*_b'b~^+" },
01342 { 7542, "Omega'_b'bc^0" },
01343 { -7542, "Omega'_b'bc~^0" },
01344 { 7544, "Omega*_b'bc^0" },
01345 { -7544, "Omega*_b'bc~^0" },
01346 { 7552, "Omega'_b'bb^-" },
01347 { -7552, "Omega'_b'bb~^+" },
01348 { 7554, "Omega*_b'bb^-" },
01349 { -7554, "Omega*_b'bb~^+" },
01350 { 7562, "Omega_b'tb^0" },
01351 { -7562, "Omega_b'tb~^0" },
01352 { 7612, "Xi'_b't^0" },
01353 { -7612, "Xi'_b't~^0" },
01354 { 7614, "Xi*_b't^0" },
01355 { -7614, "Xi*_b't~^0" },
01356 { 7622, "Xi'_b't^+" },
01357 { -7622, "Xi'_b't~^-" },
01358 { 7624, "Xi*_b't^+" },
01359 { -7624, "Xi*_b't~^-" },
01360 { 7632, "Omega'_b't^0" },
01361 { -7632, "Omega'_b't~^0" },
01362 { 7634, "Omega*_b't^0" },
01363 { -7634, "Omega*_b't~^0" },
01364 { 7642, "Omega'_b'tc^+" },
01365 { -7642, "Omega'_b'tc~^-" },
01366 { 7644, "Omega*_b'tc^+" },
01367 { -7644, "Omega*_b'tc~^-" },
01368 { 7652, "Omega'_b'tb^0" },
01369 { -7652, "Omega'_b'tb~^0" },
01370 { 7654, "Omega*_b'tb^0" },
01371 { -7654, "Omega*_b'tb~^0" },
01372 { 7662, "Omega'_b'tt^+" },
01373 { -7662, "Omega'_b'tt~^-" },
01374 { 7664, "Omega*_b'tt^+" },
01375 { -7664, "Omega*_b'tt~^-" },
01376 { 7712, "Xi'_b'b'^-" },
01377 { -7712, "Xi'_b'b'~^+" },
01378 { 7714, "Xi*_b'b'^-" },
01379 { -7714, "Xi*_b'b'~^+" },
01380 { 7722, "Xi'_b'b'^0" },
01381 { -7722, "Xi'_b'b'~^0" },
01382 { 7724, "Xi*_b'b'^0" },
01383 { -7724, "Xi*_b'b'~^0" },
01384 { 7732, "Omega'_b'b'^-" },
01385 { -7732, "Omega'_b'b'~^+" },
01386 { 7734, "Omega*_b'b'^-" },
01387 { -7734, "Omega*_b'b'~^+" },
01388 { 7742, "Omega'_b'b'c^0" },
01389 { -7742, "Omega'_b'b'c~^0" },
01390 { 7744, "Omega*_b'b'c^0" },
01391 { -7744, "Omega*_b'b'c~^0" },
01392 { 7752, "Omega'_b'b'b^-" },
01393 { -7752, "Omega'_b'b'b~^+" },
01394 { 7754, "Omega*_b'b'b^-" },
01395 { -7754, "Omega*_b'b'b~^+" },
01396 { 7762, "Omega'_b'b't^0" },
01397 { -7762, "Omega'_b'b't~^0" },
01398 { 7764, "Omega*_b'b't^0" },
01399 { -7764, "Omega*_b'b't~^0" },
01400 { 7774, "Omega*_b'b'b'^-" },
01401 { -7774, "Omega*_b'b'b'~^+" },
01402 { 8112, "Sigma_t'^0" },
01403 { -8112, "Sigma_t'~^0" },
01404 { 8114, "Sigma*_t'^0" },
01405 { -8114, "Sigma*_t'~^0" },
01406 { 8122, "Lambda_t'^+" },
01407 { -8122, "Lambda_t'~^-" },
01408 { 8132, "Xi_t'^0" },
01409 { -8132, "Xi_t'~^0" },
01410 { 8142, "Xi_t'c^+" },
01411 { -8142, "Xi_t'c~^-" },
01412 { 8152, "Xi_t'b^0" },
01413 { -8152, "Xi_t'b~^0" },
01414 { 8162, "Xi_t't^+" },
01415 { -8162, "Xi_t't~^-" },
01416 { 8172, "Xi_t'b'^0" },
01417 { -8172, "Xi_t'b'~^0" },
01418 { 8212, "Sigma_t'^+" },
01419 { -8212, "Sigma_t'~^-" },
01420 { 8214, "Sigma*_t'^+" },
01421 { -8214, "Sigma*_t'~^-" },
01422 { 8222, "Sigma_t'^++" },
01423 { -8222, "Sigma_t'~^--" },
01424 { 8224, "Sigma*_t'^++" },
01425 { -8224, "Sigma*_t'~^--" },
01426 { 8232, "Xi_t'^+" },
01427 { -8232, "Xi_t'~^-" },
01428 { 8242, "Xi_t'c^++" },
01429 { -8242, "Xi_t'c~^--" },
01430 { 8252, "Xi_t'b^+" },
01431 { -8252, "Xi_t'b~^-" },
01432 { 8262, "Xi_t't^++" },
01433 { -8262, "Xi_t't~^--" },
01434 { 8272, "Xi_t'b'^+" },
01435 { -8272, "Xi_t'b'~^-" },
01436 { 8312, "Xi'_t'^0" },
01437 { -8312, "Xi'_t'~^0" },
01438 { 8314, "Xi*_t'^0" },
01439 { -8314, "Xi*_t'~^0" },
01440 { 8322, "Xi'_t'^+" },
01441 { -8322, "Xi'_t'~^-" },
01442 { 8324, "Xi*_t'^+" },
01443 { -8324, "Xi*_t'~^-" },
01444 { 8332, "Omega'_t'^0" },
01445 { -8332, "Omega'_t'~^0" },
01446 { 8334, "Omega*_t'^0" },
01447 { -8334, "Omega*_t'~^0" },
01448 { 8342, "Omega_t'c^+" },
01449 { -8342, "Omega_t'c~^-" },
01450 { 8352, "Omega_t'b^0" },
01451 { -8352, "Omega_t'b~^0" },
01452 { 8362, "Omega_t't^+" },
01453 { -8362, "Omega_t't~^-" },
01454 { 8372, "Omega_t'b'^0" },
01455 { -8372, "Omega_t'b'~^0" },
01456 { 8412, "Xi'_t'c^+" },
01457 { -8412, "Xi'_t'c~^-" },
01458 { 8414, "Xi*_t'c^+" },
01459 { -8414, "Xi*_t'c~^-" },
01460 { 8422, "Xi'_t'c^++" },
01461 { -8422, "Xi'_t'c~^--" },
01462 { 8424, "Xi*_t'c^++" },
01463 { -8424, "Xi*_t'c~^--" },
01464 { 8432, "Omega'_t'c^+" },
01465 { -8432, "Omega'_t'c~^-" },
01466 { 8434, "Omega*_t'c^+" },
01467 { -8434, "Omega*_t'c~^-" },
01468 { 8442, "Omega'_t'cc^++" },
01469 { -8442, "Omega'_t'cc~^--" },
01470 { 8444, "Omega*_t'cc^++" },
01471 { -8444, "Omega*_t'cc~^--" },
01472 { 8452, "Omega_t'bc^+" },
01473 { -8452, "Omega_t'bc~^-" },
01474 { 8462, "Omega_t'tc^++" },
01475 { -8462, "Omega_t'tc~^--" },
01476 { 8472, "Omega_t'b'c ^+" },
01477 { -8472, "Omega_t'b'c ~^-" },
01478 { 8512, "Xi'_t'b^0" },
01479 { -8512, "Xi'_t'b~^0" },
01480 { 8514, "Xi*_t'b^0" },
01481 { -8514, "Xi*_t'b~^0" },
01482 { 8522, "Xi'_t'b^+" },
01483 { -8522, "Xi'_t'b~^-" },
01484 { 8524, "Xi*_t'b^+" },
01485 { -8524, "Xi*_t'b~^-" },
01486 { 8532, "Omega'_t'b^0" },
01487 { -8532, "Omega'_t'b~^0" },
01488 { 8534, "Omega*_t'b^0" },
01489 { -8534, "Omega*_t'b~^0" },
01490 { 8542, "Omega'_t'bc^+" },
01491 { -8542, "Omega'_t'bc~^-" },
01492 { 8544, "Omega*_t'bc^+" },
01493 { -8544, "Omega*_t'bc~^-" },
01494 { 8552, "Omega'_t'bb^0" },
01495 { -8552, "Omega'_t'bb~^0" },
01496 { 8554, "Omega*_t'bb^0" },
01497 { -8554, "Omega*_t'bb~^0" },
01498 { 8562, "Omega_t'tb^+" },
01499 { -8562, "Omega_t'tb~^-" },
01500 { 8572, "Omega_t'b'b ^0" },
01501 { -8572, "Omega_t'b'b ~^0" },
01502 { 8612, "Xi'_t't^+" },
01503 { -8612, "Xi'_t't~^-" },
01504 { 8614, "Xi*_t't^+" },
01505 { -8614, "Xi*_t't~^-" },
01506 { 8622, "Xi'_t't^++" },
01507 { -8622, "Xi'_t't~^--" },
01508 { 8624, "Xi*_t't^++" },
01509 { -8624, "Xi*_t't~^--" },
01510 { 8632, "Omega'_t't^+" },
01511 { -8632, "Omega'_t't~^-" },
01512 { 8634, "Omega*_t't^+" },
01513 { -8634, "Omega*_t't~^-" },
01514 { 8642, "Omega'_t'tc^++" },
01515 { -8642, "Omega'_t'tc~^--" },
01516 { 8644, "Omega*_t'tc^++" },
01517 { -8644, "Omega*_t'tc~^--" },
01518 { 8652, "Omega'_t'tb^+" },
01519 { -8652, "Omega'_t'tb~^-" },
01520 { 8654, "Omega*_t'tb^+" },
01521 { -8654, "Omega*_t'tb~^-" },
01522 { 8662, "Omega'_t'tt^++" },
01523 { -8662, "Omega'_t'tt~^--" },
01524 { 8664, "Omega*_t'tt^++" },
01525 { -8664, "Omega*_t'tt~^--" },
01526 { 8672, "Omega_t'b't ^+" },
01527 { -8672, "Omega_t'b't ~^-" },
01528 { 8712, "Xi'_t'b'^0" },
01529 { -8712, "Xi'_t'b'~^0" },
01530 { 8714, "Xi*_t'b'^0" },
01531 { -8714, "Xi*_t'b'~^0" },
01532 { 8722, "Xi'_t'b'^+" },
01533 { -8722, "Xi'_t'b'~^-" },
01534 { 8724, "Xi*_t'b'^+" },
01535 { -8724, "Xi*_t'b'~^-" },
01536 { 8732, "Omega'_t'b'^0" },
01537 { -8732, "Omega'_t'b'~^0" },
01538 { 8734, "Omega*_t'b'^0" },
01539 { -8734, "Omega*_t'b'~^0" },
01540 { 8742, "Omega'_t'b'c^+" },
01541 { -8742, "Omega'_t'b'c~^-" },
01542 { 8744, "Omega*_t'b'c^+" },
01543 { -8744, "Omega*_t'b'c~^-" },
01544 { 8752, "Omega'_t'b'b^0" },
01545 { -8752, "Omega'_t'b'b~^0" },
01546 { 8754, "Omega*_t'b'b^0" },
01547 { -8754, "Omega*_t'b'b~^0" },
01548 { 8762, "Omega'_t'b't^+" },
01549 { -8762, "Omega'_t'b't~^-" },
01550 { 8764, "Omega*_t'b't^+" },
01551 { -8764, "Omega*_t'b't~^-" },
01552 { 8772, "Omega'_t'b'b'^0" },
01553 { -8772, "Omega'_t'b'b'~^0" },
01554 { 8774, "Omega*_t'b'b'^0" },
01555 { -8774, "Omega*_t'b'b'~^0" },
01556 { 8812, "Xi'_t't'^+" },
01557 { -8812, "Xi'_t't'~^-" },
01558 { 8814, "Xi*_t't'^+" },
01559 { -8814, "Xi*_t't'~^-" },
01560 { 8822, "Xi'_t't'^++" },
01561 { -8822, "Xi'_t't'~^--" },
01562 { 8824, "Xi*_t't'^++" },
01563 { -8824, "Xi*_t't'~^--" },
01564 { 8832, "Omega'_t't'^+" },
01565 { -8832, "Omega'_t't'~^-" },
01566 { 8834, "Omega*_t't'^+" },
01567 { -8834, "Omega*_t't'~^-" },
01568 { 8842, "Omega'_t't'c^++" },
01569 { -8842, "Omega'_t't'c~^--" },
01570 { 8844, "Omega*_t't'c^++" },
01571 { -8844, "Omega*_t't'c~^--" },
01572 { 8852, "Omega'_t't'b^+" },
01573 { -8852, "Omega'_t't'b~^-" },
01574 { 8854, "Omega*_t't'b^+" },
01575 { -8854, "Omega*_t't'b~^-" },
01576 { 8862, "Omega'_t't't^++" },
01577 { -8862, "Omega'_t't't~^--" },
01578 { 8864, "Omega*_t't't^++" },
01579 { -8864, "Omega*_t't't~^--" },
01580 { 8872, "Omega'_t't'b'^+" },
01581 { -8872, "Omega'_t't'b'~^-" },
01582 { 8874, "Omega*_t't'b'^+" },
01583 { -8874, "Omega*_t't'b'~^-" },
01584 { 8884, "Omega*_t't't'^++" },
01585 { -8884, "Omega*_t't't'~^--" },
01586 { 9221132, "Theta^+" },
01587 { 9331122, "Phi^--" },
01588 { 1000993, "R_~gg^0" },
01589 { 1009113, "R_~gd~d^0" },
01590 { 1009213, "R_~gu~d^+" },
01591 { 1009223, "R_~gu~u^0" },
01592 { 1009313, "R_~gd~s^0" },
01593 { 1009323, "R_~gu~s^+" },
01594 { 1009333, "R_~gs~s^0" },
01595 { 1091114, "R_~gddd^-" },
01596 { 1092114, "R_~gudd^0" },
01597 { 1092214, "R_~guud^+" },
01598 { 1092224, "R_~guuu^++" },
01599 { 1093114, "R_~gsdd^-" },
01600 { 1093214, "R_~gsud^0" },
01601 { 1093224, "R_~gsuu^+" },
01602 { 1093314, "R_~gssd^-" },
01603 { 1093324, "R_~gssu^0" },
01604 { 1093334, "R_~gsss^-" },
01605 { 1000612, "R_~t_1~d^+" },
01606 { 1000622, "R_~t_1~u^0" },
01607 { 1000632, "R_~t_1~s^+" },
01608 { 1000642, "R_~t_1~c^0" },
01609 { 1000652, "R_~t_1~b^+" },
01610 { 1006113, "R_~t_1dd_1^0" },
01611 { 1006211, "R_~t_1ud_0^+" },
01612 { 1006213, "R_~t_1ud_1^+" },
01613 { 1006223, "R_~t_1uu_1^++" },
01614 { 1006311, "R_~t_1sd_0^0" },
01615 { 1006313, "R_~t_1sd_1^0" },
01616 { 1006321, "R_~t_1su_0^+" },
01617 { 1006323, "R_~t_1su_1^+" },
01618 { 1006333, "R_~t_1ss_1^0" },
01619 { 1000010010, "Hydrogen" },
01620 { 1000010020, "Deuterium" },
01621 {-1000010020, "Anti-Deuterium" },
01622 { 1000010030, "Tritium" },
01623 {-1000010030, "Anti-Tritium" },
01624 { 1000020030, "He3" },
01625 {-1000020030, "Anti-He3" },
01626 { 1000020040, "Alpha-(He4)" },
01627 {-1000020040, "Anti-Alpha-(He4)" }
01628 };
01629
01630 int lnames = sizeof(SNames)/sizeof(SNames[0]);
01631 for( int k=0; k!=lnames; ++k) {
01632 m.insert( std::make_pair( SNames[k].pid, std::string(SNames[k].pname)) );
01633 nameMap.insert( std::make_pair( std::string(SNames[k].pname), SNames[k].pid ) );
01634 }
01635 static ParticleNameMap mymaps(m,nameMap);
01636
01637 return mymaps;
01638 }
01639
01640 void writeParticleNameLine( int i, std::ostream & os )
01641 {
01642 if ( validParticleName( i ) ) {
01643 std::string pn = particleName( i );
01644 os << " PDT number: " ;
01645 os.width(12);
01646 os << i << " PDT name: " << pn << std::endl;
01647
01648 }
01649 return;
01650 }
01651
01652 }
01653
01654
01655
01656
01657 ParticleNameMap const & getParticleNameMap()
01658 {
01659 static ParticleNameMap const & pmap = ParticleNameInit();
01660 return pmap;
01661 }
01662
01663 bool validParticleName( const int & pid )
01664 {
01665 static ParticleNameMap const & pmap = getParticleNameMap();
01666
01667 ParticleNameMap::idIterator const cit = pmap.find( pid );
01668 return ( cit == pmap.end() )
01669 ? false
01670 : true;
01671 }
01672
01673 bool validParticleName( const std::string & s )
01674 {
01675 static ParticleNameMap const & pmap = getParticleNameMap();
01676 ParticleNameMap::nameIterator const cit = pmap.findString( s );
01677 return ( cit == pmap.endLookupMap() )
01678 ? false
01679 : true;
01680 }
01681
01682 std::string particleName( const int & pid )
01683 {
01684 static ParticleNameMap const & pmap = getParticleNameMap();
01685
01686 ParticleNameMap::idIterator const cit = pmap.find( pid );
01687 return ( cit == pmap.end() )
01688 ? std::string("not defined")
01689 : cit->second;
01690 }
01691
01692 int particleName( const std::string & s )
01693 {
01694 static ParticleNameMap const & pmap = getParticleNameMap();
01695 ParticleNameMap::nameIterator const cit = pmap.findString( s );
01696 return ( cit == pmap.endLookupMap() )
01697 ? 0
01698 : cit->second;
01699 }
01700
01701
01702
01703
01704 void listParticleNames( std::ostream & os )
01705 {
01706 writeVersion( os );
01707 os << " HepPID Particle List" << std::endl;
01708 os << std::endl;
01709
01710
01711
01712
01713
01714
01715
01716
01717
01718 int id, i, j, q1, q2, q3, l, m, n;
01719
01720 for( id=1; id<101; ++id) {
01721 writeParticleNameLine( id, os );
01722 writeParticleNameLine( -id, os );
01723 }
01724 for( i=11; i<1000; ++i) {
01725 id = i*10;
01726 writeParticleNameLine( id, os );
01727 writeParticleNameLine( -id, os );
01728 }
01729
01730 for( n=1; n<3; ++n) {
01731 for( q1=0; q1<10; ++q1) {
01732 for( j=0; j<10; ++j) {
01733 id = 1000000*n+10*q1+j;
01734 writeParticleNameLine( id, os );
01735 writeParticleNameLine( -id, os );
01736 }
01737 }
01738 }
01739
01740 for( n=3; n<7; ++n) {
01741 for( q2=0; q2<10; ++q2) {
01742 for( q1=0; q1<10; ++q1) {
01743 for( j=0; j<10; ++j) {
01744 for( m=0; m<10; ++m) {
01745 for( l=0; l<7; ++l) {
01746 id = 1000000*n+100000*m+10000*l+100*q2+10*q1+j;
01747 writeParticleNameLine( id, os );
01748 writeParticleNameLine( -id, os );
01749 }
01750 }
01751 }
01752 }
01753 }
01754 }
01755
01756 for( q3=0; q3<10; ++q3) {
01757 for( q2=1; q2<10; ++q2) {
01758 for( q1=1; q1<10; ++q1) {
01759 for( j=1; j<5; ++j) {
01760 id = 1000000+1000*q3+100*q2+10*q1+j;
01761 writeParticleNameLine( id, os );
01762 if(q3 > 0 ) id = 1000000+90000+1000*q3+100*q2+10*q1+j;
01763 writeParticleNameLine( id, os );
01764 }
01765 }
01766 }
01767 }
01768
01769 for( l=0; l<9; ++l) {
01770 for( i=1; i<100; ++i) {
01771 id = 9900000+10000*l+i;
01772 writeParticleNameLine( id, os );
01773 writeParticleNameLine( -id, os );
01774 }
01775 for( q3=0; q3<10; ++q3) {
01776 for( q2=1; q2<10; ++q2) {
01777 for( q1=1; q1<10; ++q1) {
01778 for( j=0; j<10; ++j) {
01779 id = 9900000+10000*l+1000*q3+100*q2+10*q1+j;
01780 writeParticleNameLine( id, os );
01781 writeParticleNameLine( -id, os );
01782 }
01783 }
01784 }
01785 }
01786 }
01787
01788 for( i=11; i<100; ++i) {
01789 for( j=0; j<10; ++j) {
01790 id = 100*i+j;
01791 writeParticleNameLine( id, os );
01792 writeParticleNameLine( -id, os );
01793 }
01794 }
01795
01796 for( q2=1; q2<10; ++q2) {
01797 for( q1=1; q1<10; ++q1) {
01798 for( j=1; j<10; ++j) {
01799 for( m=0; m<9; ++m) {
01800 for( l=0; l<10; ++l) {
01801 id = 100000*m+10000*l+100*q2+10*q1+j;
01802 writeParticleNameLine( id, os );
01803 writeParticleNameLine( -id, os );
01804 id = 9000000+100000*m+10000*l+100*q2+10*q1+j;
01805 writeParticleNameLine( id, os );
01806 writeParticleNameLine( -id, os );
01807 }
01808 }
01809 }
01810 }
01811 }
01812
01813 for( q3=1; q3<10; ++q3) {
01814 for( q2=1; q2<10; ++q2) {
01815 for( q1=1; q1<10; ++q1) {
01816 for( j=1; j<10; ++j) {
01817 for( m=0; m<9; ++m) {
01818 id = 10000*m+1000*q3+100*q2+10*q1+j;
01819 writeParticleNameLine( id, os );
01820 writeParticleNameLine( -id, os );
01821 }
01822 }
01823 }
01824 }
01825 }
01826
01827 for( l=1; l<9; ++l ) {
01828 for ( m=1; m<9; ++m ) {
01829 for( q3=1; q3<9; ++q3) {
01830 for( q2=1; q2<9; ++q2) {
01831 for( q1=1; q1<9; ++q1) {
01832 id = 9*1000000+l*100000+m*10000+1000*q3+100*q2+10*q1+2;
01833 writeParticleNameLine( id, os );
01834 writeParticleNameLine( -id, os );
01835 }
01836 }
01837 }
01838 }
01839 }
01840
01841 for( i=1; i<3; ++i) {
01842 for( m=1; m<5; ++m) {
01843 id = 1000000000+10*m+10000*i;
01844 writeParticleNameLine( id, os );
01845 writeParticleNameLine( -id, os );
01846 }
01847 }
01848 return;
01849 }
01850
01851 }