Package aloha :: Module aloha_writers
[hide private]
[frames] | no frames]

Source Code for Module aloha.aloha_writers

   1  try: 
   2      import madgraph.iolibs.file_writers as writers  
   3      import madgraph.various.q_polynomial as q_polynomial 
   4      import madgraph.various.misc as misc 
   5  except Exception: 
   6      import aloha.file_writers as writers 
   7      import aloha.q_polynomial as q_polynomial 
   8      import aloha.misc as misc 
   9   
  10  import aloha 
  11  import aloha.aloha_lib as aloha_lib 
  12  import cmath 
  13  import os 
  14  import re  
  15  from numbers import Number 
  16  from collections import defaultdict 
  17  from fractions import Fraction 
  18  # fast way to deal with string 
  19  from cStringIO import StringIO 
  20  # Look at http://www.skymind.com/~ocrow/python_string/  
  21  # For knowing how to deal with long strings efficiently. 
  22  import itertools 
  23   
  24  KERNEL = aloha_lib.KERNEL 
  25  pjoin = os.path.join 
26 27 -class WriteALOHA:
28 """ Generic writing functions """ 29 30 power_symbol = '**' 31 change_number_format = str 32 extension = '' 33 type_to_variable = {2:'F',3:'V',5:'T',1:'S',4:'R', -1:'S'} 34 type_to_size = {'S':3, 'T':18, 'V':6, 'F':6,'R':18} 35 36
37 - def __init__(self, abstract_routine, dirpath):
38 if aloha.loop_mode: 39 self.momentum_size = 4 40 else: 41 self.momentum_size = 2 42 43 self.has_model_parameter = False 44 45 name = get_routine_name(abstract = abstract_routine) 46 47 if dirpath: 48 self.dir_out = dirpath 49 self.out_path = os.path.join(dirpath, name + self.extension) 50 else: 51 self.out_path = None 52 self.dir_out = None 53 54 self.routine = abstract_routine 55 self.tag = self.routine.tag 56 self.name = name 57 58 self.particles = [self.type_to_variable[spin] for spin in \ 59 abstract_routine.spins] 60 61 self.offshell = abstract_routine.outgoing # position of the outgoing in particle list 62 self.outgoing = self.offshell # expected position for the argument list 63 if 'C%s' %((self.outgoing + 1) // 2) in self.tag: 64 #flip the outgoing tag if in conjugate 65 self.outgoing = self.outgoing + self.outgoing % 2 - (self.outgoing +1) % 2 66 self.outname = '%s%s' % (self.particles[self.outgoing -1], \ 67 self.outgoing) 68 #initialize global helper routine 69 self.declaration = Declaration_list()
70 71
72 - def pass_to_HELAS(self, indices, start=0):
73 """find the Fortran HELAS position for the list of index""" 74 75 76 if len(indices) == 1: 77 return indices[0] + start + self.momentum_size 78 79 try: 80 # When the expr is not a SplitCoefficient 81 ind_name = self.routine.expr.lorentz_ind 82 except: 83 # When the expr is a loop one, i.e. with SplitCoefficient 84 if len(set([tuple(expr.lorentz_ind) for expr in self.routine.expr.values()]))!=1: 85 raise Exception('All SplitCoefficients do not share the same indices names.') 86 for expr in self.routine.expr.values(): 87 ind_name = expr.lorentz_ind 88 break 89 90 if ind_name == ['I3', 'I2']: 91 return 4 * indices[1] + indices[0] + start + self.momentum_size 92 elif len(indices) == 2: 93 return 4 * indices[0] + indices[1] + start + self.momentum_size 94 else: 95 raise Exception, 'WRONG CONTRACTION OF LORENTZ OBJECT for routine %s: %s' \ 96 % (self.name, ind_name)
97
98 - def get_header_txt(self,mode=''):
99 """ Prototype for language specific header""" 100 raise Exception, 'THis function should be overwritten' 101 return '' 102
103 - def get_declaration_txt(self):
104 """ Prototype for how to write the declaration of variable""" 105 return ''
106
107 - def define_content(self):
108 """Prototype for language specific body""" 109 pass 110
111 - def get_momenta_txt(self):
112 """ Prototype for the definition of the momenta""" 113 raise Exception, 'THis function should be overwritten'
114
115 - def get_momentum_conservation_sign(self):
116 """find the sign associated to the momentum conservation""" 117 118 # help data 119 signs = [] 120 nb_fermion =0 121 122 #compute global sign 123 124 global_sign = -1 125 126 flipped = [2*(int(c[1:])-1) for c in self.tag if c.startswith('C')] 127 for index, spin in enumerate(self.particles): 128 assert(spin in ['S','F','V','T', 'R']) 129 130 #compute the sign 131 if 1:#spin != 'F': 132 sign = -1 * global_sign 133 elif nb_fermion % 2 == 0: 134 sign = global_sign 135 nb_fermion += 1 136 if index in flipped: 137 sign *= -1 138 else: 139 sign = -1 * global_sign 140 nb_fermion += 1 141 if index-1 in flipped: 142 sign *= -1 143 144 # No need to include the outgoing particles in the definitions 145 if index == self.outgoing -1: 146 signs.append('0*') 147 continue 148 149 if sign == 1: 150 signs.append('+') 151 else: 152 signs.append('-') 153 return signs
154 155
156 - def get_P_sign(self, index):
157 158 type = self.particles[index - 1] 159 energy_pos = self.type_to_size[type] -1 160 sign = 1 161 if self.outgoing == index: 162 sign = -1 163 #if 'C%s' % ((index +1) // 2) in self.tag: 164 # if index == self.outgoing: 165 # pass 166 # elif index % 2 and index -1 != self.outgoing: 167 # pass 168 # elif index % 2 == 1 and index + 1 != self.outgoing: 169 # pass 170 # else: 171 # sign *= -1 172 173 if sign == -1 : 174 return '-' 175 else: 176 return ''
177 178 179 180 181
182 - def get_foot_txt(self):
183 """Prototype for language specific footer""" 184 return ''
185
186 - def define_argument_list(self, couplings=None):
187 """define a list with the string of object required as incoming argument""" 188 189 call_arg = [] #incoming argument of the routine 190 191 conjugate = [2*(int(c[1:])-1) for c in self.tag if c[0] == 'C'] 192 193 194 for index,spin in enumerate(self.particles): 195 if self.offshell == index + 1: 196 continue 197 198 if index in conjugate: 199 index2, spin2 = index+1, self.particles[index+1] 200 call_arg.append(('list_complex','%s%d' % (spin2, index2 +1))) 201 #call_arg.append('%s%d' % (spin, index +1)) 202 elif index-1 in conjugate: 203 index2, spin2 = index-1, self.particles[index-1] 204 call_arg.append(('list_complex','%s%d' % (spin2, index2 +1))) 205 else: 206 call_arg.append(('list_complex','%s%d' % (spin, index +1))) 207 208 # couplings 209 if couplings is None: 210 detected_couplings = [name for type, name in self.declaration if name.startswith('COUP')] 211 coup_sort = lambda x,y: int(x[4:])-int(y[4:]) 212 detected_couplings.sort(coup_sort) 213 if detected_couplings: 214 couplings = detected_couplings 215 else: 216 couplings = ['COUP'] 217 218 for coup in couplings: 219 call_arg.append(('complex', coup)) 220 self.declaration.add(('complex',coup)) 221 222 if self.offshell: 223 if aloha.complex_mass: 224 call_arg.append(('complex','M%s' % self.outgoing)) 225 self.declaration.add(('complex','M%s' % self.outgoing)) 226 else: 227 call_arg.append(('double','M%s' % self.outgoing)) 228 self.declaration.add(('double','M%s' % self.outgoing)) 229 call_arg.append(('double','W%s' % self.outgoing)) 230 self.declaration.add(('double','W%s' % self.outgoing)) 231 232 assert len(call_arg) == len(set([a[1] for a in call_arg])) 233 assert len(self.declaration) == len(set([a[1] for a in self.declaration])), self.declaration 234 self.call_arg = call_arg 235 return call_arg
236
237 - def write(self, mode=None):
238 239 self.mode = mode 240 241 core_text = self.define_expression() 242 self.define_argument_list() 243 out = StringIO() 244 out.write(self.get_header_txt(mode=self.mode)) 245 out.write(self.get_declaration_txt()) 246 out.write(self.get_momenta_txt()) 247 out.write(core_text) 248 out.write(self.get_foot_txt()) 249 250 for elem in self.routine.symmetries: 251 out.write('\n') 252 out.write(self.define_symmetry(elem)) 253 254 text = out.getvalue() 255 256 if self.out_path: 257 writer = self.writer(self.out_path) 258 commentstring = 'This File is Automatically generated by ALOHA \n' 259 commentstring += 'The process calculated in this file is: \n' 260 commentstring += self.routine.infostr + '\n' 261 writer.write_comments(commentstring) 262 writer.writelines(text) 263 264 return text + '\n'
265 266
267 - def write_indices_part(self, indices, obj):
268 """Routine for making a string out of indices objects""" 269 270 text = 'output(%s)' % indices 271 return text 272
273 - def write_obj(self, obj, prefactor=True):
274 """Calls the appropriate writing routine""" 275 276 try: 277 vartype = obj.vartype 278 except Exception: 279 return self.change_number_format(obj) 280 281 # The order is from the most current one to the les probable one 282 if vartype == 1 : # AddVariable 283 return self.write_obj_Add(obj, prefactor) 284 elif vartype == 2 : # MultVariable 285 return self.write_MultVariable(obj, prefactor) 286 elif vartype == 6 : # MultContainer 287 return self.write_MultContainer(obj, prefactor) 288 elif vartype == 0 : # MultContainer 289 return self.write_variable(obj) 290 else: 291 raise Exception('Warning unknown object: %s' % obj.vartype)
292
293 - def write_MultVariable(self, obj, prefactor=True):
294 """Turn a multvariable into a string""" 295 296 mult_list = [self.write_variable_id(id) for id in obj] 297 data = {'factors': '*'.join(mult_list)} 298 if prefactor and obj.prefactor != 1: 299 if obj.prefactor != -1: 300 text = '%(prefactor)s * %(factors)s' 301 data['prefactor'] = self.change_number_format(obj.prefactor) 302 else: 303 text = '-%(factors)s' 304 else: 305 text = '%(factors)s' 306 return text % data
307
308 - def write_MultContainer(self, obj, prefactor=True):
309 """Turn a multvariable into a string""" 310 311 mult_list = [self.write_obj(id) for id in obj] 312 data = {'factors': '*'.join(mult_list)} 313 if prefactor and obj.prefactor != 1: 314 if obj.prefactor != -1: 315 text = '%(prefactor)s * %(factors)s' 316 data['prefactor'] = self.change_number_format(obj.prefactor) 317 else: 318 text = '-%(factors)s' 319 else: 320 text = '%(factors)s' 321 return text % data
322 323
324 - def write_obj_Add(self, obj, prefactor=True):
325 """Turns addvariable into a string""" 326 327 data = defaultdict(list) 328 number = [] 329 [data[p.prefactor].append(p) if hasattr(p, 'prefactor') else number.append(p) 330 for p in obj] 331 332 file_str = StringIO() 333 334 if prefactor and obj.prefactor != 1: 335 formatted = self.change_number_format(obj.prefactor) 336 if formatted.startswith(('+','-')): 337 file_str.write('(%s)' % formatted) 338 else: 339 file_str.write(formatted) 340 file_str.write('*(') 341 else: 342 file_str.write('(') 343 first=True 344 for value, obj_list in data.items(): 345 add= '+' 346 if value not in [-1,1]: 347 nb_str = self.change_number_format(value) 348 if nb_str[0] in ['+','-']: 349 file_str.write(nb_str) 350 else: 351 file_str.write('+') 352 file_str.write(nb_str) 353 file_str.write('*(') 354 elif value == -1: 355 add = '-' 356 file_str.write('-') 357 elif not first: 358 file_str.write('+') 359 else: 360 file_str.write('') 361 first = False 362 file_str.write(add.join([self.write_obj(obj, prefactor=False) 363 for obj in obj_list])) 364 if value not in [1,-1]: 365 file_str.write(')') 366 if number: 367 total = sum(number) 368 file_str.write('+ %s' % self.change_number_format(total)) 369 370 file_str.write(')') 371 return file_str.getvalue()
372
373 - def write_variable(self, obj):
374 return self.change_var_format(obj)
375
376 - def write_variable_id(self, id):
377 378 obj = aloha_lib.KERNEL.objs[id] 379 return self.write_variable(obj)
380
381 - def change_var_format(self, obj):
382 """format the way to write the variable and add it to the declaration list 383 """ 384 385 str_var = str(obj) 386 self.declaration.add((obj.type, str_var)) 387 return str_var
388 389 390
391 - def make_call_list(self, outgoing=None):
392 """find the way to write the call of the functions""" 393 394 if outgoing is None: 395 outgoing = self.offshell 396 397 call_arg = [] #incoming argument of the routine 398 399 conjugate = [2*(int(c[1:])-1) for c in self.tag if c[0] == 'C'] 400 401 for index,spin in enumerate(self.particles): 402 if self.offshell == index + 1: 403 continue 404 405 if index in conjugate: 406 index2, spin2 = index+1, self.particles[index+1] 407 call_arg.append('%s%d' % (spin2, index2 +1)) 408 #call_arg.append('%s%d' % (spin, index +1)) 409 elif index-1 in conjugate: 410 index2, spin2 = index-1, self.particles[index-1] 411 call_arg.append('%s%d' % (spin2, index2 +1)) 412 else: 413 call_arg.append('%s%d' % (spin, index +1)) 414 415 416 return call_arg
417 418
419 - def make_declaration_list(self):
420 """ make the list of declaration nedded by the header """ 421 422 declare_list = [] 423 424 425 for index, spin in enumerate(self.particles): 426 # First define the size of the associate Object 427 declare_list.append(self.declare_dict[spin] % (index + 1) ) 428 429 return declare_list
430
431 432 433 434 435 -class ALOHAWriterForFortran(WriteALOHA):
436 """routines for writing out Fortran""" 437 438 extension = '.f' 439 writer = writers.FortranWriter 440 441 type2def = {} 442 type2def['int'] = 'integer*4' 443 if aloha.mp_precision: 444 type2def['double'] = 'real*16' 445 type2def['complex'] = 'complex*32' 446 format = 'q0' 447 else: 448 type2def['double'] = 'real*8' 449 type2def['complex'] = 'complex*16' 450 451 format = 'd0' 452
453 - def get_fct_format(self, fct):
454 """Put the function in the correct format""" 455 if not hasattr(self, 'fct_format'): 456 one = self.change_number_format(1) 457 self.fct_format = {'csc' : '{0}/cos(dble(%s))'.format(one), 458 'sec': '{0}/sin(dble(%s))'.format(one), 459 'acsc': 'asin({0}/(dble(%s)))'.format(one), 460 'asec': 'acos({0}/(%s))'.format(one), 461 're': ' dble(%s)', 462 'im': 'imag(%s)', 463 'cmath.sqrt':'sqrt(dble(%s))', 464 'sqrt': 'sqrt(dble(%s))', 465 'complexconjugate': 'conjg(dcmplx(%s))', 466 '/' : '{0}/(%s)'.format(one), 467 'pow': '(%s)**(%s)', 468 'log': 'log(dble(%s))', 469 'asin': 'asin(dble(%s))', 470 'acos': 'acos(dble(%s))', 471 'abs': 'abs(%s)', 472 'fabs': 'abs(%s)', 473 'math.abs': 'abs(%s)', 474 'cmath.abs': 'abs(%s)', 475 '':'(%s)' 476 } 477 478 if fct in self.fct_format: 479 return self.fct_format[fct] 480 else: 481 self.declaration.add(('fct', fct)) 482 return '{0}(%s)'.format(fct)
483 484 485
486 - def get_header_txt(self, name=None, couplings=None, **opt):
487 """Define the Header of the fortran file. 488 """ 489 if name is None: 490 name = self.name 491 492 out = StringIO() 493 # define the type of function and argument 494 495 arguments = [arg for format, arg in self.define_argument_list(couplings)] 496 if not self.offshell: 497 output = 'vertex' 498 self.declaration.add(('complex','vertex')) 499 else: 500 output = '%(spin)s%(id)d' % { 501 'spin': self.particles[self.outgoing -1], 502 'id': self.outgoing} 503 self.declaration.add(('list_complex', output)) 504 505 out.write('subroutine %(name)s(%(args)s,%(output)s)\n' % \ 506 {'output':output, 'name': name, 'args': ', '.join(arguments)}) 507 508 return out.getvalue()
509
510 - def get_declaration_txt(self):
511 """ Prototype for how to write the declaration of variable 512 Include the symmetry line (entry FFV_2) 513 """ 514 515 out = StringIO() 516 out.write('implicit none\n') 517 # Check if we are in formfactor mode 518 if self.has_model_parameter: 519 out.write(' include "../MODEL/input.inc"\n') 520 out.write(' include "../MODEL/coupl.inc"\n') 521 argument_var = [name for type,name in self.call_arg] 522 # define the complex number CI = 0+1j 523 if 'MP' in self.tag: 524 out.write(' complex*32 CI\n') 525 if KERNEL.has_pi: 526 out.write(' double*16 PI\n') 527 else: 528 out.write(' complex*16 CI\n') 529 if KERNEL.has_pi: 530 out.write(' double precision PI\n') 531 out.write(' parameter (CI=(%s,%s))\n' % 532 (self.change_number_format(0),self.change_number_format(1))) 533 if KERNEL.has_pi: 534 out.write(' parameter (PI=%s)\n' % self.change_number_format(cmath.pi)) 535 for type, name in self.declaration: 536 if type.startswith('list'): 537 type = type[5:] 538 #determine the size of the list 539 if name in argument_var: 540 size ='*' 541 elif name.startswith('P'): 542 size='0:3' 543 elif name[0] in ['F','V']: 544 if aloha.loop_mode: 545 size = 8 546 else: 547 size = 6 548 elif name[0] == 'S': 549 if aloha.loop_mode: 550 size = 5 551 else: 552 size = 3 553 elif name[0] in ['R','T']: 554 if aloha.loop_mode: 555 size = 20 556 else: 557 size = 18 558 else: 559 size = '*' 560 561 out.write(' %s %s(%s)\n' % (self.type2def[type], name, size)) 562 elif type == 'fct': 563 if name.upper() in ['EXP','LOG','SIN','COS','ASIN','ACOS']: 564 continue 565 out.write(' %s %s\n' % (self.type2def['complex'], name)) 566 out.write(' external %s\n' % (name)) 567 else: 568 out.write(' %s %s\n' % (self.type2def[type], name)) 569 570 # Add the lines corresponding to the symmetry 571 572 #number = self.offshell 573 #arguments = [name for format, name in self.define_argument_list()] 574 #new_name = self.name.rsplit('_')[0] + '_%s' % new_nb 575 #return '%s\n call %s(%s)' % \ 576 # (self.get_header_txt(new_name, couplings), self.name, ','.join(arguments)) 577 couplings = [name for type, name in self.declaration if name.startswith('COUP') ] 578 couplings.sort() 579 for elem in self.routine.symmetries: 580 new_name = self.name.rsplit('_',1)[0] + '_%s' % elem 581 out.write('%s\n' % self.get_header_txt(new_name, couplings).replace('subroutine','entry')) 582 583 584 return out.getvalue()
585
586 - def get_momenta_txt(self):
587 """Define the Header of the fortran file. This include 588 - momentum conservation 589 - definition of the impulsion""" 590 591 out = StringIO() 592 593 # Define all the required momenta 594 p = [] # a list for keeping track how to write the momentum 595 596 signs = self.get_momentum_conservation_sign() 597 598 for i,type in enumerate(self.particles): 599 if self.declaration.is_used('OM%s' % (i+1)): 600 out.write(" OM{0} = {1}\n if (M{0}.ne.{1}) OM{0}={2}/M{0}**2\n".format( 601 i+1, self.change_number_format(0), self.change_number_format(1))) 602 603 if i+1 == self.outgoing: 604 out_type = type 605 out_size = self.type_to_size[type] 606 continue 607 elif self.offshell: 608 p.append('{0}{1}{2}(%(i)s)'.format(signs[i],type,i+1,type)) 609 610 if self.declaration.is_used('P%s' % (i+1)): 611 self.get_one_momenta_def(i+1, out) 612 613 # define the resulting momenta 614 if self.offshell: 615 energy_pos = out_size -2 616 type = self.particles[self.outgoing-1] 617 618 for i in range(self.momentum_size): 619 dict_energy = {'i':1+i} 620 out.write(' %s%s(%s) = %s\n' % (type,self.outgoing, 1+i, 621 ''.join(p) % dict_energy)) 622 if self.declaration.is_used('P%s' % self.outgoing): 623 self.get_one_momenta_def(self.outgoing, out) 624 625 626 # Returning result 627 return out.getvalue()
628
629 - def get_one_momenta_def(self, i, strfile):
630 631 type = self.particles[i-1] 632 633 if aloha.loop_mode: 634 template ='P%(i)d(%(j)d) = %(sign)s%(type)s%(i)d(%(nb)d)\n' 635 else: 636 template ='P%(i)d(%(j)d) = %(sign)s%(operator)s(%(type)s%(i)d(%(nb2)d))\n' 637 638 nb2 = 1 639 for j in range(4): 640 if not aloha.loop_mode: 641 nb = j + 1 642 if j == 0: 643 assert not aloha.mp_precision 644 operator = 'dble' # not suppose to pass here in mp 645 elif j == 1: 646 nb2 += 1 647 elif j == 2: 648 assert not aloha.mp_precision 649 operator = 'dimag' # not suppose to pass here in mp 650 elif j ==3: 651 nb2 -= 1 652 else: 653 operator ='' 654 nb = 1+ j 655 nb2 = 1 + j 656 strfile.write(template % {'j':j,'type': type, 'i': i, 657 'nb': nb, 'nb2': nb2, 'operator':operator, 658 'sign': self.get_P_sign(i)})
659
660 - def shift_indices(self, match):
661 """shift the indices for non impulsion object""" 662 if match.group('var').startswith('P'): 663 shift = 0 664 else: 665 shift = self.momentum_size 666 return '%s(%s)' % (match.group('var'), int(match.group('num')) + shift)
667
668 - def change_var_format(self, name):
669 """Formatting the variable name to Fortran format""" 670 671 if isinstance(name, aloha_lib.ExtVariable): 672 # external parameter nothing to do but handling model prefix 673 self.has_model_parameter = True 674 if name.lower() in ['pi', 'as', 'mu_r', 'aewm1','g']: 675 return name 676 return '%s%s' % (aloha.aloha_prefix, name) 677 678 if '_' in name: 679 vtype = name.type 680 decla = name.split('_',1)[0] 681 self.declaration.add(('list_%s' % vtype, decla)) 682 else: 683 self.declaration.add((name.type, name)) 684 name = re.sub('(?P<var>\w*)_(?P<num>\d+)$', self.shift_indices , name) 685 return name 686
687 - def change_number_format(self, number):
688 """Formating the number""" 689 690 def isinteger(x): 691 try: 692 return int(x) == x 693 except TypeError: 694 return False
695 696 if isinteger(number): 697 out = '%s%s' % (str(int(number)),self.format) 698 elif isinstance(number, complex): 699 if number.imag: 700 if number.real: 701 out = '(%s + %s*CI)' % (self.change_number_format(number.real), \ 702 self.change_number_format(number.imag)) 703 else: 704 if number.imag == 1: 705 out = 'CI' 706 elif number.imag == -1: 707 out = '-CI' 708 else: 709 out = '%s * CI' % self.change_number_format(number.imag) 710 else: 711 out = '%s' % (self.change_number_format(number.real)) 712 else: 713 tmp = Fraction(str(number)) 714 tmp = tmp.limit_denominator(100) 715 if not abs(tmp - number) / abs(tmp + number) < 1e-8: 716 out = '%s%s' % (number, self.format) 717 else: 718 out = '%s%s/%s%s' % (tmp.numerator, self.format, tmp.denominator, self.format) 719 return out 720
721 - def define_expression(self):
722 """Define the functions in a 100% way """ 723 724 out = StringIO() 725 726 if self.routine.contracted: 727 for name,obj in self.routine.contracted.items(): 728 out.write(' %s = %s\n' % (name, self.write_obj(obj))) 729 self.declaration.add(('complex', name)) 730 731 732 def sort_fct(a, b): 733 if len(a) < len(b): 734 return -1 735 elif len(a) > len(b): 736 return 1 737 elif a < b: 738 return -1 739 else: 740 return +1
741 742 keys = self.routine.fct.keys() 743 keys.sort(sort_fct) 744 for name in keys: 745 fct, objs = self.routine.fct[name] 746 747 format = ' %s = %s\n' % (name, self.get_fct_format(fct)) 748 try: 749 text = format % ','.join([self.write_obj(obj) for obj in objs]) 750 except TypeError: 751 text = format % tuple([self.write_obj(obj) for obj in objs]) 752 finally: 753 out.write(text) 754 755 756 numerator = self.routine.expr 757 if not 'Coup(1)' in self.routine.infostr: 758 coup_name = 'COUP' 759 else: 760 coup_name = '%s' % self.change_number_format(1) 761 762 763 if not self.offshell: 764 if coup_name == 'COUP': 765 formatted = self.write_obj(numerator.get_rep([0])) 766 if formatted.startswith(('+','-')): 767 out.write(' vertex = COUP*(%s)\n' % formatted) 768 else: 769 out.write(' vertex = COUP*%s\n' % formatted) 770 else: 771 out.write(' vertex = %s\n' % self.write_obj(numerator.get_rep([0]))) 772 else: 773 OffShellParticle = '%s%d' % (self.particles[self.offshell-1],\ 774 self.offshell) 775 if 'L' not in self.tag: 776 coeff = 'denom*' 777 if not aloha.complex_mass: 778 if self.routine.denominator: 779 out.write(' denom = %(COUP)s/(%(denom)s)\n' % {'COUP': coup_name,\ 780 'denom':self.write_obj(self.routine.denominator)}) 781 else: 782 out.write(' denom = %(COUP)s/(P%(i)s(0)**2-P%(i)s(1)**2-P%(i)s(2)**2-P%(i)s(3)**2 - M%(i)s * (M%(i)s -CI* W%(i)s))\n' % \ 783 {'i': self.outgoing, 'COUP': coup_name}) 784 else: 785 if self.routine.denominator: 786 raise Exception, 'modify denominator are not compatible with complex mass scheme' 787 788 out.write(' denom = %(COUP)s/(P%(i)s(0)**2-P%(i)s(1)**2-P%(i)s(2)**2-P%(i)s(3)**2 - M%(i)s**2)\n' % \ 789 {'i': self.outgoing, 'COUP': coup_name}) 790 self.declaration.add(('complex','denom')) 791 if aloha.loop_mode: 792 ptype = 'list_complex' 793 else: 794 ptype = 'list_double' 795 self.declaration.add((ptype,'P%s' % self.outgoing)) 796 else: 797 if coup_name == 'COUP': 798 coeff = 'COUP*' 799 else: 800 coeff = '' 801 to_order = {} 802 for ind in numerator.listindices(): 803 formatted = self.write_obj(numerator.get_rep(ind)) 804 if formatted.startswith(('+','-')): 805 formatted = '(%s)*%s' % tuple(formatted.split('*',1)) 806 to_order[self.pass_to_HELAS(ind)] = \ 807 ' %s(%d)= %s%s\n' % (self.outname, self.pass_to_HELAS(ind)+1, 808 coeff, formatted) 809 key = to_order.keys() 810 key.sort() 811 for i in key: 812 out.write(to_order[i]) 813 return out.getvalue() 814
815 - def define_symmetry(self, new_nb, couplings=None):
816 return ''
817 #number = self.offshell 818 #arguments = [name for format, name in self.define_argument_list()] 819 #new_name = self.name.rsplit('_')[0] + '_%s' % new_nb 820 #return '%s\n call %s(%s)' % \ 821 # (self.get_header_txt(new_name, couplings), self.name, ','.join(arguments)) 822
823 - def get_foot_txt(self):
824 return 'end\n\n'
825
826 - def write_combined(self, lor_names, mode='self', offshell=None):
827 """Write routine for combine ALOHA call (more than one coupling)""" 828 829 # Set some usefull command 830 if offshell is None: 831 sym = 1 832 offshell = self.offshell 833 else: 834 sym = None 835 name = combine_name(self.routine.name, lor_names, offshell, self.tag) 836 self.name = name 837 # write head - momenta - body - foot 838 text = StringIO() 839 routine = StringIO() 840 data = {} # for the formating of the line 841 842 # write header 843 new_couplings = ['COUP%s' % (i+1) for i in range(len(lor_names)+1)] 844 text.write(self.get_header_txt(name=name, couplings=new_couplings)) 845 846 # Define which part of the routine should be called 847 data['addon'] = ''.join(self.tag) + '_%s' % self.offshell 848 849 # how to call the routine 850 argument = [name for format, name in self.define_argument_list(new_couplings)] 851 index= argument.index('COUP1') 852 data['before_coup'] = ','.join(argument[:index]) 853 data['after_coup'] = ','.join(argument[index+len(lor_names)+1:]) 854 if data['after_coup']: 855 data['after_coup'] = ',' + data['after_coup'] 856 857 lor_list = (self.routine.name,) + lor_names 858 line = " call %(name)s%(addon)s(%(before_coup)s,%(coup)s%(after_coup)s,%(out)s)\n" 859 main = '%(spin)s%(id)d' % {'spin': self.particles[self.offshell -1], 860 'id': self.outgoing} 861 for i, name in enumerate(lor_list): 862 data['name'] = name 863 data['coup'] = 'COUP%d' % (i+1) 864 if i == 0: 865 if not offshell: 866 data['out'] = 'vertex' 867 else: 868 data['out'] = main 869 elif i==1: 870 if self.offshell: 871 type = self.particles[self.offshell-1] 872 self.declaration.add(('list_complex','%stmp' % type)) 873 else: 874 type = '' 875 self.declaration.add(('complex','%stmp' % type)) 876 data['out'] = '%stmp' % type 877 routine.write(line % data) 878 if i: 879 if not offshell: 880 routine.write( ' vertex = vertex + tmp\n') 881 else: 882 size = self.type_to_size[self.particles[offshell -1]] -2 883 routine.write(" do i = %s, %s\n" % (self.momentum_size+1, self.momentum_size+size)) 884 routine.write(" %(main)s(i) = %(main)s(i) + %(tmp)s(i)\n" %\ 885 {'main': main, 'tmp': data['out']}) 886 routine.write(' enddo\n') 887 self.declaration.add(('int','i')) 888 889 self.declaration.discard(('complex','COUP')) 890 for name in aloha_lib.KERNEL.reduced_expr2: 891 self.declaration.discard(('complex', name)) 892 893 #clean pointless declaration 894 #self.declaration.discard 895 896 897 text.write(self.get_declaration_txt()) 898 text.write(routine.getvalue()) 899 text.write(self.get_foot_txt()) 900 901 902 text = text.getvalue() 903 if self.out_path: 904 writer = self.writer(self.out_path,'a') 905 commentstring = 'This File is Automatically generated by ALOHA \n' 906 commentstring += 'The process calculated in this file is: \n' 907 commentstring += self.routine.infostr + '\n' 908 writer.write_comments(commentstring) 909 writer.writelines(text) 910 return text
911
912 -class QP(object):
913 """routines for writing out Fortran""" 914 915 type2def = {} 916 type2def['int'] = 'integer*4' 917 type2def['double'] = 'real*16' 918 type2def['complex'] = 'complex*32' 919 format = 'q0' 920
921 -class ALOHAWriterForFortranQP(QP, ALOHAWriterForFortran):
922
923 - def __init__(self, *arg):
924 return ALOHAWriterForFortran.__init__(self, *arg)
925
926 -class ALOHAWriterForFortranLoop(ALOHAWriterForFortran):
927 """routines for writing out Fortran""" 928
929 - def __init__(self, abstract_routine, dirpath):
930 931 ALOHAWriterForFortran.__init__(self, abstract_routine, dirpath) 932 # position of the outgoing in particle list 933 self.l_id = [int(c[1:]) for c in abstract_routine.tag if c[0] == 'L'][0] 934 self.l_helas_id = self.l_id # expected position for the argument list 935 if 'C%s' %((self.l_id + 1) // 2) in abstract_routine.tag: 936 #flip the outgoing tag if in conjugate 937 self.l_helas_id += self.l_id % 2 - (self.l_id +1) % 2
938 939
940 - def define_expression(self):
941 """Define the functions in a 100% way """ 942 943 out = StringIO() 944 945 if self.routine.contracted: 946 for name,obj in self.routine.contracted.items(): 947 out.write(' %s = %s\n' % (name, self.write_obj(obj))) 948 self.declaration.add(('complex', name)) 949 950 if not 'Coup(1)' in self.routine.infostr: 951 coup = True 952 else: 953 coup = False 954 955 rank = self.routine.expr.get_max_rank() 956 poly_object = q_polynomial.Polynomial(rank) 957 nb_coeff = q_polynomial.get_number_of_coefs_for_rank(rank) 958 size = self.type_to_size[self.particles[self.l_id-1]] - 2 959 for K in range(size): 960 for J in range(nb_coeff): 961 data = poly_object.get_coef_at_position(J) 962 arg = [data.count(i) for i in range(4)] # momentum 963 arg += [0] * (K) + [1] + [0] * (size-1-K) 964 try: 965 expr = self.routine.expr[tuple(arg)] 966 except KeyError: 967 expr = None 968 for ind in self.routine.expr.values()[0].listindices(): 969 if expr: 970 data = expr.get_rep(ind) 971 else: 972 data = 0 973 if data and coup: 974 out.write(' COEFF(%s,%s,%s)= coup*%s\n' % ( 975 self.pass_to_HELAS(ind)+1-self.momentum_size, 976 J, K+1, self.write_obj(data))) 977 else: 978 out.write(' COEFF(%s,%s,%s)= %s\n' % ( 979 self.pass_to_HELAS(ind)+1-self.momentum_size, 980 J, K+1, self.write_obj(data))) 981 982 983 return out.getvalue()
984
985 - def get_declaration_txt(self):
986 """ Prototype for how to write the declaration of variable""" 987 988 out = StringIO() 989 out.write('implicit none\n') 990 # define the complex number CI = 0+1j 991 if 'MP' in self.tag: 992 out.write(' complex*32 CI\n') 993 else: 994 out.write(' complex*16 CI\n') 995 out.write(' parameter (CI=(%s,%s))\n' % 996 (self.change_number_format(0),self.change_number_format(1))) 997 argument_var = [name for type,name in self.call_arg] 998 for type, name in self.declaration: 999 if type.startswith('list'): 1000 type = type[5:] 1001 #determine the size of the list 1002 if name.startswith('P'): 1003 size='0:3' 1004 elif name in argument_var: 1005 size ='*' 1006 elif name[0] in ['F','V']: 1007 if aloha.loop_mode: 1008 size = 8 1009 else: 1010 size = 6 1011 elif name[0] == 'S': 1012 if aloha.loop_mode: 1013 size = 5 1014 else: 1015 size = 3 1016 elif name[0] in ['R','T']: 1017 if aloha.loop_mode: 1018 size = 20 1019 else: 1020 size = 18 1021 elif name == 'coeff': 1022 out.write("include 'coef_specs.inc'\n") 1023 size = 'MAXLWFSIZE,0:VERTEXMAXCOEFS-1,MAXLWFSIZE' 1024 1025 out.write(' %s %s(%s)\n' % (self.type2def[type], name, size)) 1026 elif type == 'fct': 1027 if name.upper() in ['EXP','LOG','SIN','COS','ASIN','ACOS']: 1028 continue 1029 out.write(' %s %s\n' % (self.type2def['complex'], name)) 1030 out.write(' external %s\n' % (name)) 1031 else: 1032 out.write(' %s %s\n' % (self.type2def[type], name)) 1033 1034 return out.getvalue()
1035 1036
1037 - def define_argument_list(self, couplings=None):
1038 """define a list with the string of object required as incoming argument""" 1039 1040 conjugate = [2*(int(c[1:])-1) for c in self.tag if c[0] == 'C'] 1041 call_arg = [] 1042 #incoming argument of the routine 1043 call_arg.append( ('list_complex', 'P%s'% self.l_helas_id) ) 1044 1045 self.declaration.add(call_arg[0]) 1046 1047 for index,spin in enumerate(self.particles): 1048 if self.outgoing == index + 1: 1049 continue 1050 if self.l_helas_id == index + 1: 1051 continue 1052 call_arg.append(('complex','%s%d' % (spin, index +1))) 1053 self.declaration.add(('list_complex', call_arg[-1][-1])) 1054 1055 # couplings 1056 if couplings is None: 1057 detected_couplings = [name for type, name in self.declaration if name.startswith('COUP')] 1058 coup_sort = lambda x,y: int(x[4:])-int(y[4:]) 1059 detected_couplings.sort(coup_sort) 1060 if detected_couplings: 1061 couplings = detected_couplings 1062 else: 1063 couplings = ['COUP'] 1064 1065 for coup in couplings: 1066 call_arg.append(('complex', coup)) 1067 self.declaration.add(('complex',coup)) 1068 1069 if self.offshell: 1070 if aloha.complex_mass: 1071 call_arg.append(('complex','M%s' % self.outgoing)) 1072 self.declaration.add(('complex','M%s' % self.outgoing)) 1073 else: 1074 call_arg.append(('double','M%s' % self.outgoing)) 1075 self.declaration.add(('double','M%s' % self.outgoing)) 1076 call_arg.append(('double','W%s' % self.outgoing)) 1077 self.declaration.add(('double','W%s' % self.outgoing)) 1078 1079 self.call_arg = call_arg 1080 1081 return call_arg
1082
1083 - def get_momenta_txt(self):
1084 """Define the Header of the ortran file. This include 1085 - momentum conservation 1086 - definition of the impulsion""" 1087 1088 out = StringIO() 1089 1090 # Define all the required momenta 1091 p = [] # a list for keeping track how to write the momentum 1092 size = [] 1093 1094 signs = self.get_momentum_conservation_sign() 1095 1096 for i,type in enumerate(self.particles): 1097 if self.declaration.is_used('OM%s' % (i+1)): 1098 out.write(" OM{0} = {1}\n if (M{0}.ne.{1}) OM{0}={2}/M{0}**2\n".format( 1099 i+1, self.change_number_format(0), self.change_number_format(1))) 1100 1101 if i+1 == self.outgoing: 1102 out_type = 'P' 1103 continue 1104 elif i+1 == self.l_helas_id: 1105 p.append('%sP%s({%s})' % (signs[i],i+1,len(size))) 1106 size.append(0) 1107 continue 1108 elif self.offshell: 1109 p.append('%s%s%s({%s})' % (signs[i],type,i+1,len(size))) 1110 size.append(1) 1111 1112 if self.declaration.is_used('P%s' % (i+1)): 1113 self.get_one_momenta_def(i+1, out) 1114 1115 # define the resulting momenta 1116 if self.offshell: 1117 if aloha.loop_mode: 1118 size_p = 4 1119 else: 1120 size_p = 2 1121 for i in range(size_p): 1122 out.write(' P%s(%s) = %s\n' % (self.outgoing, i, 1123 ''.join(p).format(*[s+i for s in size]))) 1124 1125 1126 # Returning result 1127 return out.getvalue()
1128 1129
1130 - def get_loop_argument(self, key):
1131 """return the position for the argument in the HELAS convention""" 1132 1133 loop_momentum = key[:4] 1134 basis = key[4:] 1135 1136 loop_pos = sum([loop_momentum[i] * (i+1) for i in range(4)]) 1137 basis_pos = sum([basis[i] * (i+1) for i in range(len(basis))]) 1138 return (str(loop_pos), str(basis_pos))
1139 1140 1141 1142 1143 1144
1145 - def get_header_txt(self, name=None, couplings=None, **opt):
1146 """Define the Header of the fortran file. This include 1147 - function tag 1148 - definition of variable 1149 """ 1150 if name is None: 1151 name = self.name 1152 1153 out = StringIO() 1154 # define the type of function and argument 1155 1156 arguments = [arg for format, arg in self.define_argument_list(couplings)] 1157 self.declaration.add(('list_complex', 'P%s'% self.outgoing)) 1158 self.declaration.add(('list_complex', 'P%s'% self.l_helas_id)) 1159 self.declaration.add(('list_complex', 'coeff')) 1160 out.write('subroutine %(name)s(%(args)s, P%(out)s, COEFF)\n' % \ 1161 {'name': name, 'args': ', '.join(arguments), 1162 'out':self.outgoing}) 1163 1164 return out.getvalue()
1165
1166 -class ALOHAWriterForFortranLoopQP(QP, ALOHAWriterForFortranLoop):
1167 """routines for writing out Fortran""" 1168
1169 - def __init__(self, *arg):
1170 return ALOHAWriterForFortranLoop.__init__(self, *arg)
1171
1172 -def get_routine_name(name=None, outgoing=None, tag=None, abstract=None):
1173 """ build the name of the aloha function """ 1174 1175 assert (name and outgoing is not None) or abstract 1176 1177 if tag is None: 1178 tag = list(abstract.tag) 1179 else: 1180 tag=list(tag) 1181 1182 if name is None: 1183 prefix='' 1184 if 'MP' in tag: 1185 prefix = 'MP_' 1186 tag.remove('MP') 1187 if any(t.startswith('P') for t in tag): 1188 #put the propagator tag at the end 1189 propa = [t for t in tag if t.startswith('P')][0] 1190 tag.remove(propa) 1191 tag.append(propa) 1192 name = prefix + abstract.name + ''.join(tag) 1193 1194 if outgoing is None: 1195 outgoing = abstract.outgoing 1196 1197 return '%s_%s' % (name, outgoing)
1198
1199 -def combine_name(name, other_names, outgoing, tag=None, unknown_propa=False):
1200 """ build the name for combined aloha function """ 1201 1202 # Two possible scheme FFV1C1_2_X or FFV1__FFV2C1_X 1203 # If they are all in FFVX scheme then use the first 1204 p=re.compile('^(?P<type>[RFSVT]{2,})(?P<id>\d+)$') 1205 routine = '' 1206 if p.search(name): 1207 base, id = p.search(name).groups() 1208 routine = name 1209 for s in other_names: 1210 try: 1211 base2,id2 = p.search(s).groups() 1212 except Exception: 1213 routine = '' 1214 break # one matching not good -> other scheme 1215 if base != base2: 1216 routine = '' 1217 break # one matching not good -> other scheme 1218 else: 1219 routine += '_%s' % id2 1220 1221 if routine: 1222 if tag is not None: 1223 routine += ''.join(tag) 1224 if unknown_propa and outgoing: 1225 routine += '%(propa)s' 1226 if outgoing is not None: 1227 return routine +'_%s' % outgoing 1228 else: 1229 return routine 1230 1231 if tag is not None: 1232 addon = ''.join(tag) 1233 else: 1234 addon = '' 1235 if 'C' in name: 1236 short_name, addon = name.split('C',1) 1237 try: 1238 addon = 'C' + str(int(addon)) 1239 except Exception: 1240 addon = '' 1241 else: 1242 name = short_name 1243 if unknown_propa: 1244 addon += '%(propa)s' 1245 1246 if outgoing is not None: 1247 return '_'.join((name,) + tuple(other_names)) + addon + '_%s' % outgoing 1248 else: 1249 return '_'.join((name,) + tuple(other_names)) + addon
1250
1251 -class ALOHAWriterForCPP(WriteALOHA):
1252 """Routines for writing out helicity amplitudes as C++ .h and .cc files.""" 1253 1254 extension = '.c' 1255 writer = writers.CPPWriter 1256 1257 type2def = {} 1258 type2def['int'] = 'int' 1259 type2def['double'] = 'double ' 1260 type2def['complex'] = 'complex<double> ' 1261 1262 #variable overwritten by gpu 1263 realoperator = '.real()' 1264 imagoperator = '.imag()' 1265 ci_definition = ' complex<double> cI = complex<double>(0.,1.);\n' 1266 1267
1268 - def change_number_format(self, number):
1269 """Formating the number""" 1270 1271 def isinteger(x): 1272 try: 1273 return int(x) == x 1274 except TypeError: 1275 return False
1276 1277 if isinteger(number): 1278 out = '%s.' % (str(int(number))) 1279 elif isinstance(number, complex): 1280 if number.imag: 1281 if number.real: 1282 out = '(%s + %s*cI)' % (self.change_number_format(number.real), \ 1283 self.change_number_format(number.imag)) 1284 else: 1285 if number.imag == 1: 1286 out = 'cI' 1287 elif number.imag == -1: 1288 out = '-cI' 1289 else: 1290 out = '%s * cI' % self.change_number_format(number.imag) 1291 else: 1292 out = '%s' % (self.change_number_format(number.real)) 1293 else: 1294 tmp = Fraction(str(number)) 1295 tmp = tmp.limit_denominator(100) 1296 if not abs(tmp - number) / abs(tmp + number) < 1e-8: 1297 out = '%.9f' % (number) 1298 else: 1299 out = '%s./%s.' % (tmp.numerator, tmp.denominator) 1300 return out 1301 1302
1303 - def shift_indices(self, match):
1304 """shift the indices for non impulsion object""" 1305 if match.group('var').startswith('P'): 1306 shift = 0 1307 else: 1308 shift = self.momentum_size - 1 1309 return '%s[%s]' % (match.group('var'), int(match.group('num')) + shift)
1310 1311
1312 - def change_var_format(self, name):
1313 """Format the variable name to C++ format""" 1314 1315 if '_' in name: 1316 type = name.type 1317 decla = name.split('_',1)[0] 1318 self.declaration.add(('list_%s' % type, decla)) 1319 else: 1320 self.declaration.add((name.type, name.split('_',1)[0])) 1321 name = re.sub('(?P<var>\w*)_(?P<num>\d+)$', self.shift_indices , name) 1322 return name 1323
1324 - def get_fct_format(self, fct):
1325 """Put the function in the correct format""" 1326 if not hasattr(self, 'fct_format'): 1327 one = self.change_number_format(1) 1328 self.fct_format = {'csc' : '{0}/cos(%s)'.format(one), 1329 'sec': '{0}/sin(%s)'.format(one), 1330 'acsc': 'asin({0}/(%s))'.format(one), 1331 'asec': 'acos({0}/(%s))'.format(one), 1332 're': ' real(%s)', 1333 'im': 'imag(%s)', 1334 'cmath.sqrt':'sqrt(%s)', 1335 'sqrt': 'sqrt(%s)', 1336 'complexconjugate': 'conj(dcmplx(%s))', 1337 '/' : '{0}/%s'.format(one), 1338 'abs': 'abs(%s)' 1339 } 1340 1341 if fct in self.fct_format: 1342 return self.fct_format[fct] 1343 else: 1344 self.declaration.add(('fct', fct)) 1345 return '{0}(%s)'.format(fct)
1346 1347 1348 1349
1350 - def get_header_txt(self, name=None, couplings=None,mode=''):
1351 """Define the Header of the fortran file. This include 1352 - function tag 1353 - definition of variable 1354 """ 1355 if name is None: 1356 name = self.name 1357 1358 if mode=='': 1359 mode = self.mode 1360 1361 1362 1363 out = StringIO() 1364 # define the type of function and argument 1365 if not 'no_include' in mode: 1366 out.write('#include \"%s.h\"\n\n' % self.name) 1367 args = [] 1368 for format, argname in self.define_argument_list(couplings): 1369 if format.startswith('list'): 1370 type = self.type2def[format[5:]] 1371 list_arg = '[]' 1372 else: 1373 type = self.type2def[format] 1374 list_arg = '' 1375 args.append('%s%s%s'% (type, argname, list_arg)) 1376 1377 if not self.offshell: 1378 output = 'complex<double> & vertex' 1379 #self.declaration.add(('complex','vertex')) 1380 else: 1381 output = 'complex<double> %(spin)s%(id)d[]' % { 1382 'spin': self.particles[self.outgoing -1], 1383 'id': self.outgoing} 1384 self.declaration.add(('list_complex', output)) 1385 1386 out.write('void %(name)s(%(args)s,%(output)s)' % \ 1387 {'output':output, 'name': name, 'args': ', '.join(args)}) 1388 if 'is_h' in mode: 1389 out.write(';\n') 1390 else: 1391 out.write('\n{\n') 1392 1393 return out.getvalue()
1394
1395 - def get_declaration_txt(self):
1396 """ Prototype for how to write the declaration of variable 1397 Include the symmetry line (entry FFV_2) 1398 """ 1399 1400 out = StringIO() 1401 argument_var = [name for type,name in self.call_arg] 1402 # define the complex number CI = 0+1j 1403 out.write(self.ci_definition) 1404 1405 for type, name in self.declaration: 1406 if type.startswith('list'): 1407 type = type[5:] 1408 if name.startswith('P'): 1409 size = 4 1410 elif not 'tmp' in name: 1411 continue 1412 #should be define in the header 1413 elif name[0] in ['F','V']: 1414 if aloha.loop_mode: 1415 size = 8 1416 else: 1417 size = 6 1418 elif name[0] == 'S': 1419 if aloha.loop_mode: 1420 size = 5 1421 else: 1422 size = 3 1423 elif name[0] in ['R','T']: 1424 if aloha.loop_mode: 1425 size = 20 1426 else: 1427 size = 18 1428 1429 out.write(' %s %s[%s];\n' % (self.type2def[type], name, size)) 1430 elif (type, name) not in self.call_arg: 1431 out.write(' %s %s;\n' % (self.type2def[type], name)) 1432 1433 return out.getvalue()
1434
1435 - def get_foot_txt(self):
1436 """Prototype for language specific footer""" 1437 return '}\n'
1438
1439 - def get_momenta_txt(self):
1440 """Define the Header of the fortran file. This include 1441 - momentum conservation 1442 - definition of the impulsion""" 1443 1444 out = StringIO() 1445 1446 # Define all the required momenta 1447 p = [] # a list for keeping track how to write the momentum 1448 1449 signs = self.get_momentum_conservation_sign() 1450 1451 for i,type in enumerate(self.particles): 1452 if self.declaration.is_used('OM%s' % (i+1)): 1453 out.write(" OM{0} = {1};\n if (M{0} != {1})\n OM{0}={2}/pow(M{0},2);\n".format( 1454 i+1, self.change_number_format(0), self.change_number_format(1))) 1455 1456 if i+1 == self.outgoing: 1457 out_type = type 1458 out_size = self.type_to_size[type] 1459 continue 1460 elif self.offshell: 1461 p.append('{0}{1}{2}[%(i)s]'.format(signs[i],type,i+1,type)) 1462 1463 if self.declaration.is_used('P%s' % (i+1)): 1464 self.get_one_momenta_def(i+1, out) 1465 1466 # define the resulting momenta 1467 if self.offshell: 1468 energy_pos = out_size -2 1469 type = self.particles[self.outgoing-1] 1470 if aloha.loop_mode: 1471 size_p = 4 1472 else: 1473 size_p = 2 1474 1475 for i in range(size_p): 1476 dict_energy = {'i':i} 1477 out.write(' %s%s[%s] = %s;\n' % (type,self.outgoing, i, 1478 ''.join(p) % dict_energy)) 1479 if self.declaration.is_used('P%s' % self.outgoing): 1480 self.get_one_momenta_def(self.outgoing, out) 1481 1482 1483 # Returning result 1484 return out.getvalue()
1485
1486 - def get_one_momenta_def(self, i, strfile):
1487 1488 type = self.particles[i-1] 1489 1490 if aloha.loop_mode: 1491 template ='P%(i)d[%(j)d] = %(sign)s%(type)s%(i)d[%(nb)d];\n' 1492 else: 1493 template ='P%(i)d[%(j)d] = %(sign)s%(type)s%(i)d[%(nb2)d]%(operator)s;\n' 1494 1495 nb2 = 0 1496 for j in range(4): 1497 if not aloha.loop_mode: 1498 nb = j 1499 if j == 0: 1500 assert not aloha.mp_precision 1501 operator = self.realoperator # not suppose to pass here in mp 1502 elif j == 1: 1503 nb2 += 1 1504 elif j == 2: 1505 assert not aloha.mp_precision 1506 operator = self.imagoperator # not suppose to pass here in mp 1507 elif j ==3: 1508 nb2 -= 1 1509 else: 1510 operator ='' 1511 nb = j 1512 nb2 = j 1513 strfile.write(template % {'j':j,'type': type, 'i': i, 1514 'nb': nb, 'nb2': nb2, 'operator':operator, 1515 'sign': self.get_P_sign(i)})
1516 1517
1518 - def define_expression(self):
1519 """Write the helicity amplitude in C++ format""" 1520 1521 out = StringIO() 1522 1523 if self.routine.contracted: 1524 for name,obj in self.routine.contracted.items(): 1525 out.write(' %s = %s;\n' % (name, self.write_obj(obj))) 1526 self.declaration.add(('complex', name)) 1527 1528 for name, (fct, objs) in self.routine.fct.items(): 1529 format = ' %s = %s;\n' % (name, self.get_fct_format(fct)) 1530 out.write(format % ','.join([self.write_obj(obj) for obj in objs])) 1531 1532 1533 1534 numerator = self.routine.expr 1535 if not 'Coup(1)' in self.routine.infostr: 1536 coup_name = 'COUP' 1537 else: 1538 coup_name = '%s' % self.change_number_format(1) 1539 if not self.offshell: 1540 if coup_name == 'COUP': 1541 out.write(' vertex = COUP*%s;\n' % self.write_obj(numerator.get_rep([0]))) 1542 else: 1543 out.write(' vertex = %s;\n' % self.write_obj(numerator.get_rep([0]))) 1544 else: 1545 OffShellParticle = '%s%d' % (self.particles[self.offshell-1],\ 1546 self.offshell) 1547 if 'L' not in self.tag: 1548 coeff = 'denom' 1549 if not aloha.complex_mass: 1550 if self.routine.denominator: 1551 out.write(' denom = %(COUP)s/(%(denom)s)\n' % {'COUP': coup_name,\ 1552 'denom':self.write_obj(self.routine.denominator)}) 1553 else: 1554 out.write(' denom = %(coup)s/(pow(P%(i)s[0],2)-pow(P%(i)s[1],2)-pow(P%(i)s[2],2)-pow(P%(i)s[3],2) - M%(i)s * (M%(i)s -cI* W%(i)s));\n' % \ 1555 {'i': self.outgoing, 'coup': coup_name}) 1556 else: 1557 if self.routine.denominator: 1558 raise Exception, 'modify denominator are not compatible with complex mass scheme' 1559 1560 out.write(' denom = %(coup)s/(pow(P%(i)s[0],2)-pow(P%(i)s[1],2)-pow(P%(i)s[2],2)-pow(P%(i)s[3],2) - pow(M%(i)s,2));\n' % \ 1561 {'i': self.outgoing, 'coup': coup_name}) 1562 self.declaration.add(('complex','denom')) 1563 if aloha.loop_mode: 1564 ptype = 'list_complex' 1565 else: 1566 ptype = 'list_double' 1567 self.declaration.add((ptype,'P%s' % self.outgoing)) 1568 else: 1569 coeff = 'COUP' 1570 1571 for ind in numerator.listindices(): 1572 out.write(' %s[%d]= %s*%s;\n' % (self.outname, 1573 self.pass_to_HELAS(ind), coeff, 1574 self.write_obj(numerator.get_rep(ind)))) 1575 return out.getvalue()
1576 1577 remove_double = re.compile('complex<double> (?P<name>[\w]+)\[\]')
1578 - def define_symmetry(self, new_nb, couplings=None):
1579 """Write the call for symmetric routines""" 1580 number = self.offshell 1581 arguments = [name for format, name in self.define_argument_list()] 1582 new_name = self.name.rsplit('_')[0] + '_%s' % new_nb 1583 output = '%(spin)s%(id)d' % { 1584 'spin': self.particles[self.offshell -1], 1585 'id': self.outgoing} 1586 return '%s\n %s(%s,%s);\n}' % \ 1587 (self.get_header_txt(new_name, couplings, mode='no_include'), 1588 self.name, ','.join(arguments), output)
1589
1590 - def get_h_text(self,couplings=None):
1591 """Return the full contents of the .h file""" 1592 1593 h_string = StringIO() 1594 if not self.mode == 'no_include': 1595 h_string.write('#ifndef '+ self.name + '_guard\n') 1596 h_string.write('#define ' + self.name + '_guard\n') 1597 h_string.write('#include <complex>\n') 1598 h_string.write('using namespace std;\n\n') 1599 1600 h_header = self.get_header_txt(mode='no_include__is_h', couplings=couplings) 1601 h_string.write(h_header) 1602 1603 for elem in self.routine.symmetries: 1604 symmetryhead = h_header.replace( \ 1605 self.name,self.name[0:-1]+'%s' %(elem)) 1606 h_string.write(symmetryhead) 1607 1608 if not self.mode == 'no_include': 1609 h_string.write('#endif\n\n') 1610 1611 return h_string.getvalue()
1612 1613
1614 - def write_combined_cc(self, lor_names, offshell=None, sym=True, mode=''):
1615 "Return the content of the .cc file linked to multiple lorentz call." 1616 1617 # Set some usefull command 1618 if offshell is None: 1619 offshell = self.offshell 1620 1621 name = combine_name(self.routine.name, lor_names, offshell, self.tag) 1622 self.name = name 1623 # write head - momenta - body - foot 1624 text = StringIO() 1625 routine = StringIO() 1626 data = {} # for the formating of the line 1627 1628 # write header 1629 new_couplings = ['COUP%s' % (i+1) for i in range(len(lor_names)+1)] 1630 text.write(self.get_header_txt(name=name, couplings=new_couplings, mode=mode)) 1631 1632 # Define which part of the routine should be called 1633 data['addon'] = ''.join(self.tag) + '_%s' % self.offshell 1634 1635 # how to call the routine 1636 argument = [name for format, name in self.define_argument_list(new_couplings)] 1637 index= argument.index('COUP1') 1638 data['before_coup'] = ','.join(argument[:index]) 1639 data['after_coup'] = ','.join(argument[index+len(lor_names)+1:]) 1640 if data['after_coup']: 1641 data['after_coup'] = ',' + data['after_coup'] 1642 1643 lor_list = (self.routine.name,) + lor_names 1644 line = " %(name)s%(addon)s(%(before_coup)s,%(coup)s%(after_coup)s,%(out)s);\n" 1645 main = '%(spin)s%(id)d' % {'spin': self.particles[self.offshell -1], 1646 'id': self.outgoing} 1647 for i, name in enumerate(lor_list): 1648 data['name'] = name 1649 data['coup'] = 'COUP%d' % (i+1) 1650 if i == 0: 1651 if not offshell: 1652 data['out'] = 'vertex' 1653 else: 1654 data['out'] = main 1655 elif i==1: 1656 if self.offshell: 1657 type = self.particles[self.offshell-1] 1658 self.declaration.add(('list_complex','%stmp' % type)) 1659 else: 1660 type = '' 1661 self.declaration.add(('complex','%stmp' % type)) 1662 data['out'] = '%stmp' % type 1663 routine.write(line % data) 1664 if i: 1665 if not offshell: 1666 routine.write( ' vertex = vertex + tmp;\n') 1667 else: 1668 size = self.type_to_size[self.particles[offshell -1]] -2 1669 routine.write(""" i= %s;\nwhile (i < %s)\n{\n""" % (self.momentum_size, self.momentum_size+size)) 1670 routine.write(" %(main)s[i] = %(main)s[i] + %(tmp)s[i];\n i++;\n" %\ 1671 {'main': main, 'tmp': data['out']}) 1672 routine.write('}\n') 1673 self.declaration.add(('int','i')) 1674 self.declaration.discard(('complex','COUP')) 1675 for name in aloha_lib.KERNEL.reduced_expr2: 1676 self.declaration.discard(('complex', name)) 1677 1678 #clean pointless declaration 1679 #self.declaration.discard 1680 1681 text.write(self.get_declaration_txt()) 1682 text.write(routine.getvalue()) 1683 text.write(self.get_foot_txt()) 1684 1685 text = text.getvalue() 1686 1687 return text
1688 1689
1690 - def write(self, **opt):
1691 """Write the .h and .cc files""" 1692 1693 cc_text = WriteALOHA.write(self, **opt) 1694 h_text = self.get_h_text() 1695 1696 # write in two file 1697 if self.out_path: 1698 writer_h = writers.CPPWriter(self.out_path[:-len(self.extension)] + ".h") 1699 commentstring = 'This File is Automatically generated by ALOHA \n' 1700 commentstring += 'The process calculated in this file is: \n' 1701 commentstring += self.routine.infostr + '\n' 1702 writer_h.write_comments(commentstring) 1703 writer_h.writelines(h_text) 1704 1705 return h_text, cc_text
1706 1707 1708
1709 - def write_combined(self, lor_names, mode='', offshell=None, **opt):
1710 """Write the .h and .cc files associated to the combined file""" 1711 1712 # Set some usefull command 1713 if offshell is None: 1714 sym = 1 1715 offshell = self.offshell 1716 else: 1717 sym = None 1718 1719 if mode == 'self': 1720 # added to another file 1721 self.mode = 'no_include' 1722 1723 #name = combine_name(self.name, lor_names, offshell, self.tag) 1724 1725 #h_text = self.write_combined_h(lor_names, offshell, **opt) 1726 cc_text, h_text = StringIO() , StringIO() 1727 cc_text.write(self.write_combined_cc(lor_names, offshell, mode=mode,**opt)) 1728 couplings = ['COUP%d' % (i+1) for i in range(len(lor_names)+1)] 1729 1730 if mode == 'self': 1731 self.mode = 'self' 1732 h_text.write(self.get_h_text(couplings=couplings)) 1733 1734 #ADD SYMETRY 1735 if sym: 1736 for elem in self.routine.symmetries: 1737 self.mode = 'no_include' 1738 cc_text.write( self.write_combined_cc(lor_names, elem)) 1739 1740 1741 if self.out_path: 1742 # Prepare a specific file 1743 path = os.path.join(os.path.dirname(self.out_path), self.name) 1744 commentstring = 'This File is Automatically generated by ALOHA \n' 1745 1746 writer_h = writers.CPPWriter(path + ".h") 1747 writer_h.write_comments(commentstring) 1748 writer_h.writelines(h_text) 1749 1750 writer_cc = writers.CPPWriter(path + ".cc") 1751 writer_cc.write_comments(commentstring) 1752 writer_cc.writelines(cc_text) 1753 1754 return h_text.getvalue(), cc_text.getvalue()
1755
1756 1757 -class ALOHAWriterForGPU(ALOHAWriterForCPP):
1758 1759 extension = '.cu' 1760 realoperator = '.re' 1761 imagoperator = '.im' 1762 ci_definition = 'complex<double> cI = mkcmplx(0., 1.);\n' 1763
1764 - def get_header_txt(self, name=None, couplings=None, mode=''):
1765 """Define the Header of the fortran file. This include 1766 - function tag 1767 - definition of variable 1768 """ 1769 text = StringIO() 1770 if not 'is_h' in mode: 1771 text.write('__device__=__forceinclude__\n') 1772 text.write(ALOHAWriterForCPP.get_header_txt(self, name, couplings, mode)) 1773 return text.getvalue()
1774
1775 - def get_h_text(self,couplings=None):
1776 """Return the full contents of the .h file""" 1777 1778 h_string = StringIO() 1779 if not self.mode == 'no_include': 1780 h_string.write('#ifndef '+ self.name + '_guard\n') 1781 h_string.write('#define ' + self.name + '_guard\n') 1782 h_string.write('#include "cmplx.h"\n') 1783 h_string.write('using namespace std;\n\n') 1784 1785 h_header = self.get_header_txt(mode='no_include__is_h', couplings=couplings) 1786 h_string.write(h_header) 1787 1788 for elem in self.routine.symmetries: 1789 symmetryhead = h_header.replace( \ 1790 self.name,self.name[0:-1]+'%s' %(elem)) 1791 h_string.write(symmetryhead) 1792 1793 if not self.mode == 'no_include': 1794 h_string.write('#endif\n\n') 1795 1796 return h_string.getvalue()
1797
1798 1799 -class ALOHAWriterForPython(WriteALOHA):
1800 """ A class for returning a file/a string for python evaluation """ 1801 1802 extension = '.py' 1803 writer = writers.PythonWriter 1804 1805 @staticmethod
1806 - def change_number_format(obj, pure_complex=''):
1807 change_number_format = ALOHAWriterForPython.change_number_format 1808 if obj.real == 0 and obj.imag: 1809 if int(obj.imag) == obj.imag: 1810 return '%ij' % obj.imag 1811 else: 1812 return change_number_format(obj.imag, pure_complex='j') 1813 elif obj.imag != 0: 1814 return '(%s+%s)' % (change_number_format(obj.real), 1815 change_number_format(obj.imag, pure_complex='j')) 1816 elif obj.imag == 0: 1817 if int(obj.real) == obj: 1818 return '%i%s' % (obj.real,pure_complex) 1819 obj = obj.real 1820 tmp = Fraction(str(obj)) 1821 tmp = tmp.limit_denominator(100) 1822 if not abs(tmp - obj) / abs(tmp + obj) < 1e-8: 1823 out = str(obj) 1824 elif tmp.denominator != 1: 1825 out = '%i%s/%i' % (tmp.numerator, pure_complex, tmp.denominator) 1826 else: 1827 out = '%i%s' % (tmp.numerator, pure_complex) 1828 return out
1829 1830
1831 - def shift_indices(self, match):
1832 """shift the indices for non impulsion object""" 1833 if match.group('var').startswith('P'): 1834 shift = 0 1835 else: 1836 shift = -1 + self.momentum_size 1837 1838 return '%s[%s]' % (match.group('var'), int(match.group('num')) + shift)
1839
1840 - def change_var_format(self, name):
1841 """Formatting the variable name to Python format 1842 start to count at zero. 1843 No neeed to define the variable in python -> no need to keep track of 1844 the various variable 1845 """ 1846 1847 if '_' not in name: 1848 self.declaration.add((name.type, name)) 1849 else: 1850 self.declaration.add(('', name.split('_',1)[0])) 1851 name = re.sub('(?P<var>\w*)_(?P<num>\d+)$', self.shift_indices , name) 1852 1853 return name
1854
1855 - def get_fct_format(self, fct):
1856 """Put the function in the correct format""" 1857 if not hasattr(self, 'fct_format'): 1858 one = self.change_number_format(1) 1859 self.fct_format = {'csc' : '{0}/cmath.cos(%s)'.format(one), 1860 'sec': '{0}/cmath.sin(%s)'.format(one), 1861 'acsc': 'cmath.asin({0}/(%s))'.format(one), 1862 'asec': 'cmath.acos({0}/(%s))'.format(one), 1863 're': ' complex(%s).real', 1864 'im': 'complex(%s).imag', 1865 'cmath.sqrt': 'cmath.sqrt(%s)', 1866 'sqrt': 'cmath.sqrt(%s)', 1867 'pow': 'pow(%s, %s)', 1868 'complexconjugate': 'complex(%s).conjugate()', 1869 '/' : '{0}/%s'.format(one), 1870 'abs': 'cmath.fabs(%s)' 1871 } 1872 1873 if fct in self.fct_format: 1874 return self.fct_format[fct] 1875 elif hasattr(cmath, fct): 1876 self.declaration.add(('fct', fct)) 1877 return 'cmath.{0}(%s)'.format(fct) 1878 else: 1879 raise Exception, "Unable to handle function name %s (no special rule defined and not in cmath)" % fct
1880
1881 - def define_expression(self):
1882 """Define the functions in a 100% way """ 1883 1884 out = StringIO() 1885 1886 if self.routine.contracted: 1887 for name,obj in self.routine.contracted.items(): 1888 out.write(' %s = %s\n' % (name, self.write_obj(obj))) 1889 1890 def sort_fct(a, b): 1891 if len(a) < len(b): 1892 return -1 1893 elif len(a) > len(b): 1894 return 1 1895 elif a < b: 1896 return -1 1897 else: 1898 return +1
1899 1900 keys = self.routine.fct.keys() 1901 keys.sort(sort_fct) 1902 for name in keys: 1903 fct, objs = self.routine.fct[name] 1904 format = ' %s = %s\n' % (name, self.get_fct_format(fct)) 1905 try: 1906 text = format % ','.join([self.write_obj(obj) for obj in objs]) 1907 except TypeError: 1908 text = format % tuple([self.write_obj(obj) for obj in objs]) 1909 finally: 1910 out.write(text) 1911 1912 1913 1914 numerator = self.routine.expr 1915 if not 'Coup(1)' in self.routine.infostr: 1916 coup_name = 'COUP' 1917 else: 1918 coup_name = '%s' % self.change_number_format(1) 1919 1920 if not self.offshell: 1921 if coup_name == 'COUP': 1922 out.write(' vertex = COUP*%s\n' % self.write_obj(numerator.get_rep([0]))) 1923 else: 1924 out.write(' vertex = %s\n' % self.write_obj(numerator.get_rep([0]))) 1925 else: 1926 OffShellParticle = '%s%d' % (self.particles[self.offshell-1],\ 1927 self.offshell) 1928 1929 if not 'L' in self.tag: 1930 coeff = 'denom' 1931 if not aloha.complex_mass: 1932 if self.routine.denominator: 1933 out.write(' denom = %(COUP)s/(%(denom)s)\n' % {'COUP': coup_name,\ 1934 'denom':self.write_obj(self.routine.denominator)}) 1935 else: 1936 out.write(' denom = %(coup)s/(P%(i)s[0]**2-P%(i)s[1]**2-P%(i)s[2]**2-P%(i)s[3]**2 - M%(i)s * (M%(i)s -1j* W%(i)s))\n' % 1937 {'i': self.outgoing,'coup':coup_name}) 1938 else: 1939 if self.routine.denominator: 1940 raise Exception, 'modify denominator are not compatible with complex mass scheme' 1941 1942 out.write(' denom = %(coup)s/(P%(i)s[0]**2-P%(i)s[1]**2-P%(i)s[2]**2-P%(i)s[3]**2 - M%(i)s**2)\n' % 1943 {'i': self.outgoing,'coup':coup_name}) 1944 else: 1945 coeff = 'COUP' 1946 1947 for ind in numerator.listindices(): 1948 out.write(' %s[%d]= %s*%s\n' % (self.outname, 1949 self.pass_to_HELAS(ind), coeff, 1950 self.write_obj(numerator.get_rep(ind)))) 1951 return out.getvalue() 1952
1953 - def get_foot_txt(self):
1954 if not self.offshell: 1955 return ' return vertex\n\n' 1956 else: 1957 return ' return %s\n\n' % (self.outname)
1958 1959
1960 - def get_header_txt(self, name=None, couplings=None, mode=''):
1961 """Define the Header of the fortran file. This include 1962 - function tag 1963 - definition of variable 1964 """ 1965 if name is None: 1966 name = self.name 1967 1968 out = StringIO() 1969 out.write("import cmath\n") 1970 if self.mode == 'mg5': 1971 out.write('import aloha.template_files.wavefunctions as wavefunctions\n') 1972 else: 1973 out.write('import wavefunctions\n') 1974 1975 1976 # define the type of function and argument 1977 1978 arguments = [arg for format, arg in self.define_argument_list(couplings)] 1979 out.write('def %(name)s(%(args)s):\n' % \ 1980 {'name': name, 'args': ','.join(arguments)}) 1981 1982 return out.getvalue()
1983
1984 - def get_momenta_txt(self):
1985 """Define the Header of the fortran file. This include 1986 - momentum conservation 1987 - definition of the impulsion""" 1988 1989 out = StringIO() 1990 1991 # Define all the required momenta 1992 p = [] # a list for keeping track how to write the momentum 1993 1994 signs = self.get_momentum_conservation_sign() 1995 1996 for i,type in enumerate(self.particles): 1997 if self.declaration.is_used('OM%s' % (i+1)): 1998 out.write(" OM{0} = 0.0\n if (M{0}): OM{0}=1.0/M{0}**2\n".format( (i+1) )) 1999 if i+1 == self.outgoing: 2000 out_type = type 2001 out_size = self.type_to_size[type] 2002 continue 2003 elif self.offshell: 2004 p.append('{0}{1}{2}[%(i)s]'.format(signs[i],type,i+1)) 2005 2006 if self.declaration.is_used('P%s' % (i+1)): 2007 self.get_one_momenta_def(i+1, out) 2008 2009 # define the resulting momenta 2010 if self.offshell: 2011 type = self.particles[self.outgoing-1] 2012 out.write(' %s%s = wavefunctions.WaveFunction(size=%s)\n' % (type, self.outgoing, out_size)) 2013 if aloha.loop_mode: 2014 size_p = 4 2015 else: 2016 size_p = 2 2017 for i in range(size_p): 2018 dict_energy = {'i':i} 2019 2020 out.write(' %s%s[%s] = %s\n' % (type,self.outgoing, i, 2021 ''.join(p) % dict_energy)) 2022 2023 self.get_one_momenta_def(self.outgoing, out) 2024 2025 2026 # Returning result 2027 return out.getvalue()
2028
2029 - def get_one_momenta_def(self, i, strfile):
2030 """return the string defining the momentum""" 2031 2032 type = self.particles[i-1] 2033 2034 main = ' P%d = [' % i 2035 if aloha.loop_mode: 2036 template ='%(sign)s%(type)s%(i)d[%(nb)d]' 2037 else: 2038 template ='%(sign)scomplex(%(type)s%(i)d[%(nb2)d])%(operator)s' 2039 2040 nb2 = 0 2041 strfile.write(main) 2042 data = [] 2043 for j in range(4): 2044 if not aloha.loop_mode: 2045 nb = j 2046 if j == 0: 2047 assert not aloha.mp_precision 2048 operator = '.real' # not suppose to pass here in mp 2049 elif j == 1: 2050 nb2 += 1 2051 elif j == 2: 2052 assert not aloha.mp_precision 2053 operator = '.imag' # not suppose to pass here in mp 2054 elif j ==3: 2055 nb2 -= 1 2056 else: 2057 operator ='' 2058 nb = j 2059 nb2 = j 2060 data.append(template % {'j':j,'type': type, 'i': i, 2061 'nb': nb, 'nb2': nb2, 'operator':operator, 2062 'sign': self.get_P_sign(i)}) 2063 2064 strfile.write(', '.join(data)) 2065 strfile.write(']\n')
2066 2067
2068 - def define_symmetry(self, new_nb, couplings=None):
2069 number = self.offshell 2070 arguments = [name for format, name in self.define_argument_list()] 2071 new_name = self.name.rsplit('_')[0] + '_%s' % new_nb 2072 return '%s\n return %s(%s)' % \ 2073 (self.get_header_txt(new_name, couplings), self.name, ','.join(arguments))
2074
2075 - def write_combined(self, lor_names, mode='self', offshell=None):
2076 """Write routine for combine ALOHA call (more than one coupling)""" 2077 2078 # Set some usefull command 2079 if offshell is None: 2080 sym = 1 2081 offshell = self.offshell 2082 else: 2083 sym = None 2084 name = combine_name(self.routine.name, lor_names, offshell, self.tag) 2085 # write head - momenta - body - foot 2086 text = StringIO() 2087 data = {} # for the formating of the line 2088 2089 # write header 2090 new_couplings = ['COUP%s' % (i+1) for i in range(len(lor_names)+1)] 2091 text.write(self.get_header_txt(name=name, couplings=new_couplings)) 2092 2093 # Define which part of the routine should be called 2094 data['addon'] = ''.join(self.tag) + '_%s' % self.offshell 2095 2096 # how to call the routine 2097 argument = [name for format, name in self.define_argument_list(new_couplings)] 2098 index= argument.index('COUP1') 2099 data['before_coup'] = ','.join(argument[:index]) 2100 data['after_coup'] = ','.join(argument[index+len(lor_names)+1:]) 2101 if data['after_coup']: 2102 data['after_coup'] = ',' + data['after_coup'] 2103 2104 lor_list = (self.routine.name,) + lor_names 2105 line = " %(out)s = %(name)s%(addon)s(%(before_coup)s,%(coup)s%(after_coup)s)\n" 2106 main = '%(spin)s%(id)d' % {'spin': self.particles[self.offshell -1], 2107 'id': self.outgoing} 2108 for i, name in enumerate(lor_list): 2109 data['name'] = name 2110 data['coup'] = 'COUP%d' % (i+1) 2111 if i == 0: 2112 if not offshell: 2113 data['out'] = 'vertex' 2114 else: 2115 data['out'] = main 2116 elif i==1: 2117 data['out'] = 'tmp' 2118 text.write(line % data) 2119 if i: 2120 if not offshell: 2121 text.write( ' vertex += tmp\n') 2122 else: 2123 size = self.type_to_size[self.particles[offshell -1]] -2 2124 text.write(" for i in range(%s,%s):\n" % (self.momentum_size, self.momentum_size+size)) 2125 text.write(" %(main)s[i] += tmp[i]\n" %{'main': main}) 2126 2127 text.write(self.get_foot_txt()) 2128 2129 #ADD SYMETRY 2130 if sym: 2131 for elem in self.routine.symmetries: 2132 text.write(self.write_combined(lor_names, mode, elem)) 2133 2134 text = text.getvalue() 2135 if self.out_path: 2136 writer = self.writer(self.out_path) 2137 commentstring = 'This File is Automatically generated by ALOHA \n' 2138 commentstring += 'The process calculated in this file is: \n' 2139 commentstring += self.routine.infostr + '\n' 2140 writer.write_comments(commentstring) 2141 writer.writelines(text) 2142 2143 2144 return text
2145
2146 2147 -class Declaration_list(set):
2148
2149 - def is_used(self, var):
2150 if hasattr(self, 'var_name'): 2151 return var in self.var_name 2152 self.var_name = [name for type,name in self] 2153 return var in self.var_name
2154
2155 - def add(self,obj):
2156 if __debug__: 2157 type, name = obj 2158 samename = [t for t,n in self if n ==name] 2159 for type2 in samename: 2160 assert type2 == type, '%s is defined with two different type "%s" and "%s"' % \ 2161 (name, type2, type) 2162 2163 set.add(self,obj)
2164
2165 2166 -class WriterFactory(object):
2167
2168 - def __new__(cls, data, language, outputdir, tags):
2169 language = language.lower() 2170 if isinstance(data.expr, aloha_lib.SplitCoefficient): 2171 assert language == 'fortran' 2172 if 'MP' in tags: 2173 return ALOHAWriterForFortranLoopQP(data, outputdir) 2174 else: 2175 return ALOHAWriterForFortranLoop(data, outputdir) 2176 if language == 'fortran': 2177 if 'MP' in tags: 2178 return ALOHAWriterForFortranQP(data, outputdir) 2179 else: 2180 return ALOHAWriterForFortran(data, outputdir) 2181 elif language == 'python': 2182 return ALOHAWriterForPython(data, outputdir) 2183 elif language == 'cpp': 2184 return ALOHAWriterForCPP(data, outputdir) 2185 elif language == 'gpu': 2186 return ALOHAWriterForGPU(data, outputdir) 2187 else: 2188 raise Exception, 'Unknown output format'
2189 2190 2191 2192 #unknow_fct_template = """ 2193 #cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 2194 # double complex %(fct_name)s(%(args)s) 2195 # implicit none 2196 #c Include Model parameter / coupling 2197 # include \"../MODEL/input.inc\" 2198 # include \"../MODEL/coupl.inc\" 2199 #c Defintion of the arguments 2200 #%(definitions)s 2201 # 2202 #c enter HERE the code corresponding to your function. 2203 #c The output value should be put to the %(fct_name)s variable. 2204 # 2205 # 2206 # return 2207 # end 2208 #cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 2209 # 2210 #""" 2211 # 2212 #def write_template_fct(fct_name, nb_args, output_dir): 2213 # """create a template for function not recognized by ALOHA""" 2214 # 2215 # dico = {'fct_name' : fct_name, 2216 # 'args': ','.join(['S%i' %(i+1) for i in range(nb_args)]), 2217 # 'definitions': '\n'.join([' double complex S%i' %(i+1) for i in range(nb_args)])} 2218 # 2219 # ff = open(pjoin(output_dir, 'additional_aloha_function.f'), 'a') 2220 # ff.write(unknow_fct_template % dico) 2221 # ff.close() 2222