IATEX-ed on March 12, 2008.

HepMC 2

a C+-+ Event Record for Monte Carlo Generators

http://savannah.cern.ch /projects/hepmc/

User Manual Version 2.03
February 4, 2008

Matt Dobbs

University of Victoria, Canada

Jorgen Beck Hansen
CERN

Lynn Garren
Fermi National Accelerator Laboratory

Lars Sonnenschein
CERN

Abstract

The HepMC package is an object oriented event record written in C++ for High Energy
Physics Monte Carlo Generators. Many extensions from HEPEVT, the Fortran HEP standard,
are supported: the number of entries is unlimited, spin density matrices can be stored with each
vertex, flow patterns (such as color) can be stored and traced, integers representing random
number generator states can be stored, and an arbitrary number of event weights can be included.
Particles and vertices are kept separate in a graph structure, physically similar to a physics event.
The added information supports the modularisation of event generators. The package has been
kept as simple as possible with minimal internal/external dependencies. Event information is
accessed by means of iterators supplied with the package.

HepMC 2 is an extension to the original HepMC written by Matt Dobbs.

Contents

1 Introduction 2
1.1 Features of the HepMC Event Record 3

2 HepMC 2 3
2.1 Overview of Changes Since HepMC 1.26 4

3 Package Structure 4
3.1 Dependencies e 5

3.2 Namespace e 5
3.3 Performance 5

4 Overview of Core Classes 6
4.1 HepMC:GenEvent e 6
4.1.1 HepMC::PdfInfo 7

4.1.2 HepMC::Heavylon 7

4.2 HepMC:GenVertex e 7
4.3 HepMC::WeightContainer e 8
4.4 HepMC::GenParticle 8
4.4.1 HepMC::Flow e 9

4.4.2 HepMC::Polarization 10

4.4.3 HepMC::FourVector e 10

4.5 HepMC:IOBaseClass o v i i e e e e e e e 10

5 Overview of Iterators 11
5.1 HepMC::GenEvent::vertex_iterator oo 11
5.2 HepMC::GenEvent::vertex_const_iterator 11
5.3 HepMC::GenEvent::particle_iterator 0. 11
5.4 HepMC::GenEvent::particle_const_iterator 11
5.5 HepMC::GenVertex::vertex_iterator 11

5.6 HepMC::GenVertex::particle_iterator, 12

6 Building HepMC 13
7 Examples 13
8 Deprecated Classes 13
8.1 HepMC:IO_Ascii (deprecated) 14
8.2 HepMC::ParticleData (deprecated) 14
8.3 HepMC::ParticleDataTable (deprecated) 14

9 Acknowlegements 15

1 Introduction

This user manual is intended as a companion to the online documentation®, and together with the
examples should provide a friendly introduction to the HepMC event record. A general overview
is available in Ref. [1].

The HEP community has moved towards Object-Oriented computing tools (usually C++): most
upcoming experiments are choosing OO software architecture, and Pythia 8 [2] and Herwig++ [3],
written in C++, are available. A standard event record must be simple for the end user to access
information, while maintaining the power and flexibility offered by OO design. The HepMC event
record has been developed to satisfy these criteria.

HepMC is an object oriented event record written in C++ for Monte Carlo Generators in High
Energy Physics. It has been developed independent of a particular experiment or event generator.
It is intended to serve as both a “container class” for storing events after generation and also
as a “framework” in which events can be built up inside a set of generators. This allows for
the modularisation of event generators—wherein different event generators could be employed for
different steps or components of the event generation process (illustrated in Figure 1). 2

ﬁ)eciﬁc NLO Generator ARIADNE \
—_—
Hard Process Generator " *"555" " Cascade Package

Herwig

Event Record . .
—— Hadronization Package

EvtGen

——l
Decay Package
ATLfast

Event Record ; :
\ VLS Detector Simulation /

Figure 1: HepMC supports the concept of modularised event generation (illustrated above) by
containing sufficient information within the event record to act as a messenger between two modular
steps in the event generation process.

Event Record
——

Physics events are generally visualised using diagrams with a graph structure (Figure 2, left)
which HepMC imitates by separating out particles from vertices and representing them as the edges
and nodes respectively of a graph 3 (Figure 2, right). Each vertex maintains a listing of its incoming
and outgoing particles, while each particle points back to its production vertex and decay vertex.
The extension to multiple collisions is natural - the super-position of graphs from several different
initial processes - and so the event may contain an unlimited number of (possibly interconnected)
graphs. The number of vertices/particles in each event is also open-ended. A subset of the event
(such as one connected graph or a single vertex and its descendants) may be examined or modified

"http://lcgapp.cern.ch/project /simu/HepMC/

2At the Physics at TeV Colliders Workshop 2001 in Les Houches, France, a group of Monte Carlo authors and
experimentalists produced a document [4] which outlines the information content necessary for two event generators
to communicate information about a hard process to the subsequent stages of event generation. This was implemented
in a set of Fortran common blocks, and many ideas from HepMC were used, such as the scheme for handling color
flow information. Version 1.1 of HepMC supports the full event information content of Ref. [4] (run information—
pertaining to a collection of events—is also specified in that document and is not addressed in HepMC).

SRef. [5] uses a similar structure.

without having to interpret complex parent/child relationship codes or re-shuffle the rest of the
event record.

Decay {

Hadronization

HepMC
S

Minimum Bias
+ ol
Collisions

Minimum Bias
+ ot
Collisions

Hard -
SubProcess

1(x,0%) 1(xQ%)

Parton
Distributions

Figure 2: Events in HepMC are stored in a graph structure (right), similar to a physicist’s visuali-
sation of a collision event (left).

1.1

Features of the HepMC Event Record

simple - easy access to information provided by iterators

minimum dependencies

information is stored in a graph structure, physically similar to a collision event
allows for the inclusion of spin density matrices

allows for the tracing of an arbitrary number of flow patterns

ability to store the state of random number generators (as integers)

ability to store an arbitrary number of event weights

strategies for conversion to/from HEPEVT?? which are easily extendible to support other
event records

strategies for input/output to/from ascii files which are easily extendible to support other
forms of persistency

2 HepMC 2

Since January 2006, HepMC has been supported as an LCG external package. The official web site
is now http://savannah.cern.ch/projects/hepmc/, and compiled libraries for supported platforms
are available at /afs/cern.ch/sw/lcg/external/HepMC.

Historically, HepMC has used CLHEP (Ref. [6]) Lorentz vectors. Some users wished to use
a more modern Lorentz vector package. At the same time, there was concern about allowing
dependencies on any external package. Therefore, the decision was made to replace the CLHEP
Lorentz vectors with a minimal vector representation within HepMC.

Because this is a major change, the versioning is changed from 1.xx.yy to 2.xx.yy. Normally, a
version number change in zz represents a change to the code and a version number change in yy
represents a bug fix.

There have also been continuing requests for other features. Changes to HepMC must be
approved by the LCG simulation project.

2.1 Overview of Changes Since HepMC 1.26

See the HepMC ChangeLog [7] for a complete listing.

GenEvent now contains pointers to a heavy ion class and a PDF information class. The pointers
are null by default.

GenParticle momentum and GenVertex position are represented by a simple FourVector class
instead of the CLHEP Lorentz vectors. The SimpleVector.h header contains the FourVector and
ThreeVector classes. GenVertex will return the ThreeVector portion of the position. Polarization
will accept or return a ThreeVector representation of the polarization.

Both FourVector and ThreeVector have templated constructors. These constructors allow you
to use the GenParticle and GenVertex constructors with any Lorentz vector, as long as the Lorentz
vector has x(), y(, z(), and t() methods.

The generated mass, which has always been part of the HEPEVT common block, is now stored
in GenParticle. When a particle has large momentum and small mass, calculating the mass from
the momentum is unreliable. Also, different machine representations and roundoff errors mean that
a calculated mass is not always consistent. If no generated mass is set, then the mass is calculated
from the momementum and stored in GenParticle.

The IO_AsciiParticles class provides output in the Pythia style. This output is intended for
ease of reading event output, not for persistency.

The IO_Ascii output class is deprecated in favor of I0_GenEvent. 10 _GenEvent persists all
information in the updated GenEvent object and uses iostreams for greater flexibility. 10 _GenEvent
also has a constructor taking a file name and mode type for backwards compatibility. Output
remains in ascii format.

3 Package Structure

Entries within the event record are separated into particles and vertices. Each particle is composed
of momentum, flow, and polarization classes as well as id and status information. The vertices are
the connection nodes between particles and are a container class for particles: thus each particle
within an event belongs to at least one vertex. In addition the vertex is composed of position,
id, and (spin density matrix) weight information. Particles and vertices are uniquely identified by
an integer—referred to as a “barcode”—which is meant to be a persistent label for a particular
particle instance. The event is the container class for all (possibly inter-connected) vertices in the
event and contains process id, event number, weight, and random number state information.

Iterators are provided as methods of the vertex and event classes which allow easy directed
access to information in the C++ Standard Template Library (STL) style.

The event record class relationships and the particle data class relationships are shown in
Figure 3.

Several input/output strategies are provided. The interface for these strategies is defined by an
abstract base class, 10 _BaseClass. These strategies are capable of input/output of events and as
such they depend directly on the event record class.

The package consists of about 5500 lines of code including ~1500 comments. There are 7 core
classes (GenEvent, GenVertex, GenParticle, Flow, Polarization, WeightContainer, 10 BaseClass)

and several utility classes (i.e. IO_ HEPEVT, 1I0_GenEvent, HEPEVT Wrapper, PythiaWrapper,

).

3.1 Dependencies

The HepMC 2 package depends only on the C++ Standard Template Library [8] (STL).

The HepMC 1 package dependencies were limited to STL and the vector classes from the
Class Library for High Energy Physics [6] (CLHEP). Simple wrappers for the Fortran versions of
Pythia [9] and Herwig are supplied with the package to allow the inclusion of event generation
examples.

3.2 Namespace

The HepMC package is written within the HepMC:: namespace. Outside of this namespace all
class names will need to be prefixed by HepMC::.

3.3 Performance

The CPU time performance of the HepMC event record has been quantified by generating 1000
LHC W+~ production events using Pythia 5.7 and transferring the event record to HepMC using the
IO_HEPEVT strategy. Results are summarised in Table 1. Generation of events in Pythia required
29 seconds of CPU time. Generating the same events and transferring them into HepMC required
34 seconds.

CPU Time File Size
Pythia 29 sec
+ HepMC 34 sec
+ HepMC + IO0_Ascii 64 sec 60.5 Mbytes
+ 92 sec 106 Mbytes
HEPEVT raw size 1K events, 500K particles 48.2 Mbytes

Table 1: CPU time performance and file size using a dedicated 450 MHz Pentium III.

The time to write HepMC events as ascii files using the 10_Ascii strategy was compared to
LCWRITE, a simple Fortran routine used in NLC studies to write the HEPEVT common block in
formatted ascii to file. Generating the events with Pythia, transferring them to HepMC, and writing
them to file took 64 seconds and produced a 60.5 Mbyte file. Generating the events with Pythia
and writing them to file using the LCWRITE subroutine took 92 seconds and produced a 106 Mbyte
file. Compression algorithms (such as gzip) can reduce the file sizes by a factor 3 or more. The
raw size of the HEPEVT common block for these 1000 events (which in this case produced about
500K particles) is 48.2 Mbytes. In both cases most CPU time is spent writing to file. HepMC
benefits from added logic when interpreting the record and from position information which is
stored once for each vertex, rather than with every particle.

CPU time savings will be realized when HepMC is used inside event generators - since it is
possible to target and modify one area of the particle/vertex graph without re-shuffling the rest of
the event record.

4 Overview of Core Classes

NOTE ABOUT UNITS: HepMC does not define which units are used for the information stored
in the event record. The HEPEVT standard uses GeV/mm, and so the output from most Fortran
generators will normally be in these units. CLHEP uses MeV/mm, and some collaborations such
as ATLAS have adopted these units for their simulation. Due to this ambiguity all mention of units
has been removed from the HepMC documentation. HepMC users should refer to the code that
fills the event record to determine which units are being used.

4.1 HepMC::GenEvent
IMPORTANT PUBLIC METHODS
e add_vertex: adopts the specified vertex to the event and assumes responsibility for deleting the vertex
e remove_vertex: removes the specified vertex from the event, the vertexr is not deleted - thus use of
this method is normally followed directly by a delete vertex operation
vertex_iterator: iterates over all vertices in the event - described in the iterator section
particle_iterator: iterates over all particles in the event - described in the iterator section
vertex_const_iterator: constant version of the vertex_iterator
particle_const_iterator: constant version of the particle_iterator
print: gives a formatted printout of the event to the specified output stream
barcode_to_particle: returns a pointer to the particle associated with the integer barcode argument
barcode_to_vertex: returns a pointer to the vertex associated with the integer barcode argument
RELEVANT DATA MEMBERS
signal_process_id: an integer ID uniquely specifying the signal process (i.e. MSUB in Pythia).
event_number: integer
event_scale: (optional) the scale of this event. (-1 denotes unspecifed)
alphaQCD: (optional) the value of the strong coupling constant agep used for this event. (-1 denotes
unspecifed)
o alphaQED: (optional) the value of the electroweak coupling constant agrp (e.g. %) used for this
event. (-1 denotes unspecifed)
e signal process_vertex: (optional) pointer to the vertexr defined as the signal process - allows fast
navigation to the core of the event
beam_particle_1: (optional) pointer to the first incoming beam particle
beam _particle_2: (optional) pointer to the second incoming beam particle
weights: a container of an arbitrary number of 8 byte floating point event weights
random_states: a container of an arbitrary number of 4 byte integers which define the random number
generator state just before the event generation
e heavy_ion: (optional) a pointer to a Heavylon object (zero by default)
e pdf_info: (optional) a pointer to a PdfInfo object (zero by default)
NOTES AND CONVENTIONS
e if hit and miss Monte Carlo integration is to be performed with a single event weight, the first weight
will be used by default
e Memory allocation: vertex and particle objects will normally be created by the user with the NEW
operator. Once a vertex (particle) is added to a event (vertex), it is "adopted” and becomes the
responsibility of the event (vertex) to delete that vertex (particle).

The GenEvent is the container class for vertices. A listing of all vertices is maintained with the
event, giving fast access to vertex information. GenParticles are accessed by means of the vertices.

Extended event features (weights, random_states, heavy_ion, pdf_info) have been implemented
such that if left empty/unused performance and memory usage will be similar to that of an event
without these features.

Iterators are provided as members of the GenEvent class (described in Section 5). Methods
which fill containers of particles or vertices are not provided, as the STL provides these functionalities

with algorithms such as copy and iterator adaptors such as back_inserter giving a clean generic
approach. Using this functionality it is easy to obtain lists of particles/vertices given some criteria
- such as a list of all final state particles. Classes which provide the criteria (called predicates) are
also not provided, as the number of possibilities is open ended and specific to the application - and
would clutter the HepMC package. Implementing a predicate is simple (about 4 lines of code).
Examples are given in the GenEvent header file and in example_UsingIterators.cc (Section 7).

The signal_process_id is packaged with each event (rather than being associated with a run class
for example) to handle the possibility of many processes being generated within the same run. A
container of tags specifying the meaning of the weights and random states entries is envisioned as
part of a run class - which is beyond the scope of an event record.

4.1.1 HepMC::PdfInfo

RELEVANT DATA MEMBERS

id1: flavour code of first parton

id2: flavour code of second parton

x1: fraction of beam momentum carried by first parton ("beam side”)
x2: fraction of beam momentum carried by second parton (“target side”)
scalePDF: Q-scale used in evaluation of PDF’s (in GeV)

pdfl: PDF (idl, z1, Q)

pdf2: PDF (id2, z2, Q)

PdfInfo stores additional PDF information for a GenEvent. Creation and use of this information
is optional.

4.1.2 HepMC::Heavylon

RELEVANT DATA MEMBERS

Ncoll_hard: Number of hard scatterings

Npart_proj: Number of projectile participants

Npart_targ: Number of target participants

Necoll: Number of NN (nucleon-nucleon) collisions

N_Nwounded_collisions: Number of N-Nwounded collisions
Nwounded_N_collisions: Number of Nwounded-N collisons
Nwounded_Nwounded_collisions: Number of Nwounded-Nwounded collisions
spectator_neutrons: Number of spectators neutrons

spectator_protons: Number of spectators protons

impact_parameter: Impact Parameter(fm) of collision

event_plane_angle: Azimuthal angle of event plane

eccentricity: eccentricity of participating nucleons in the transverse plane (as in phobos nucl-ex/0510031)
sigma_inel NN : nucleon-nucleon inelastic (including diffractive) cross-section

Heavylon provides additional information storage in GenEvent for Heavy Ion generators. Cre-
ation and use of this information is optional.

4.2 HepMC::GenVertex
IMPORTANT PUBLIC METHODS
e add_particle_in: adds the specified particle to the container of incoming particles
e add_particle_out: adds the specified particle to the container of outgoing particles
e remove_particle: removes the specified particle from both/either of the incoming/outgoing particle
containers, the particle is not deleted - thus use of this method is normally followed directly by a delete
particle operation
e vertex_iterator: iterates over vertices in the graph, given a specified range - described in the iterator
section

e particle_iterator: iterates over particles in the graph, given a specified range - described in the iterator
section
RELEVANT DATA MEMBERS
e position: T, ct stored as FourVector
e id: integer id, may be used to specify a vertex type
e weights: a container of 8 byte floating point numbers of arbitrary length, could be mapped in pairs
into rows and columns to form spin density matrices of complex numbers
e barcode: an integer which uniquely identifies the Gen Vertex within the event. For vertices the barcodes
are always negative integers.
NOTES AND CONVENTIONS
e no standards are currently defined for the vertex id
e once a particle is added, the vertex becomes its owner and is responsible for deleting the particle

The GenVertex is the container class for particles and forms the nodes which link particles into
a graph structure.

The weights container is included with each vertex with the intention of storing spin density
matrices. It is envisioned that a generator package would assign spin density matrices to particle
production vertices and provide the functional form of the frame definition for the matrix as a
“look-up” method for interpreting the weights. The generator package would also provide a boost
method to go from the frame of the density matrix to the lab frame and back without destroying
correlations. This gives maximum freedom to the sub-generators - allowing for different form
definitions. This implementation is consistent with the EvtGen B-decay package [10] requirements.

4.3 HepMC::WeightContainer
RELEVANT DATA MEMBERS
e weights: a vector of 8-byte floating point weights
NOTES AND CONVENTIONS
e methods are coded and names chosen in the spirit of the STL vector class

The WeightContainer is just a storage area for double precision weights used in GenEvent and
GenVertex. It is essentially an interface to the STL vector class, and its member functions are
chosen in that spirit. You might, for instance, use the GenEvent weights to include information
about differential cross sections.

4.4 HepMC::GenParticle

IMPORTANT PUBLIC METHODS
e operator FourVector: conversion operator - resolves the particle as a 4-vector according to its
momentum
e generatedMass: generated mass
e momentum().m(): calculates mass from momentum
DAtA MEMBERS
momentum: p,cE stored as FourVector
generated_mass: generated mass for this particle
pdg-id: unique integer ID specifying the particle type
status: integer specifying the particle’s status (i.e. decayed or not)
flow: allows for the storage of flow patterns (i.e. color flow), refer to Flow class
polarization: stores the particle’s polarization as (0, ¢), refer to Polarization class
production_vertex: pointer to the vertex where the particle was produced, can only be set by the
verter
e end_vertex: pointer to the vertex where the particle decays, can only be set by the vertex
e barcode: an integer which uniquely identifies the GenParticle within the event. For particles the
barcodes are always positive integers.

NOTES AND CONVENTIONS

e the particle ID should be specified according to the PDG standard [11]
e status codes are as defined for HEPEVT [12]4

The particle is the basic unit within the event record. The GenParticle class is composed of the
FourVector, Flow, and Polarization classes.

Pointers to the particle’s production and end vertex are included. In order to ensure consistency
between vertices/particles - these pointers can only be set from the vertex. Thus adding a particle
to the particles_in container of a vertex will automatically set the end vertex of the particle to point
to that vertex.

The definition of a HepLorentzVector scope resolution operator allows for the use of 4-vector
algebra with particles (i.e. preceding an instance, particle, of the HepMC::GenParticle class by
(HepLorentzVector)particle causes it to behave exactly like its 4-vector momentum, examples
are given in the particle header file).

A second 4-vector for the particle’s momentum at decay time has not been included (as for
example in [5], where the second momentum vector is included to facilitate tracking through mate-
rial). If this is desirable, one can simply add a decay vertex with the same particle type going out.
This is intuitive, since a change in momentum cannot occur without an interaction (vertex).

4.4.1 HepMC::Flow
IMPORTANT PUBLIC METHODS
e connected_partners: returns a container of all particles connected via the specified flow pattern
e dangling_connected_partners: returns a container of all particles “dangling” from the ends of the
specified flow pattern
RELEVANT DATA MEMBERS
e particle_owner: points back to the particle to which the flow object belongs
e icode map: container of integer flow codes - each entry has an index and an icode
NOTES AND CONVENTIONS
e code indices 1 and 2 are reserved for color flow

The Flow class is a data member of the GenParticle—its use is optional. It stores flow pattern
information as a series of integer flow codes and indices. This method features the possibility of
storing non-conserved flow patterns (such as baryon number violation in SUSY models). Some
examples of integer flow code representation for several events are provided in Ref. [4].

The Flow class is used to keep track of flow patterns within a graph - each pattern is assigned
a unique integer code, and this code is attached to each particle through which it passes. Different
flow types are assigned different flow indices, i.e. color flow uses index 1 and 2. Methods are
provided to return a particle’s flow partners. An example is given at the top of the Flow header
file.

4For convenience the HEPEVT standard status codes are enumerated:

0 null entry

1 existing entry - not decayed or fragmented, represents the final state as given by the generator
2 decayed or fragmented entry

3 documentation line

4-10 undefined, reserved for future standards

11-200 at the disposal of each model builder - equivalent to a null line

201- at the disposal of the user, in particular for event tracking in the detector

4.4.2 HepMC::Polarization
RELEVANT DATA MEMBERS

theta: 6 angle in radians 0 < 0 < m
phi: ¢ angle in radians 0 < ¢ < 27

NOTES AND CONVENTIONS

the angles are robust - if you supply an angle outside the range, it is properly translated (i.e. 4w
becomes 0)

Polarization is a data member of GenParticle - its use is optional. It stores the (6, ¢) polarization
information which can be returned as a ThreeVector as well.

4.4.3 HepMC::FourVector
IMPORTANT PUBLIC METHODS

A number of simple vector manipulations are available. Check the reference manual for details.

RELEVANT DATA MEMBERS

X: position T or momentum px
y: position y or momentum py
z: position z or momentum pz
t: time or energy

GenParticle momentum and GenVertex position are stored as FourVectors. FourVector has a
templated constructor that will automatically convert any other vector with x(), y(), z(), and t()
access methods to a FourVector. This feature is used when converting from the HEPEVT common

block.

4.5

HepMC::10_BaseClass

IMPORTANT PUBLIC METHODS

write_event: writes out the specified event to the output strategy

read_next_event: reads the next event from the input strategy into memory
write_particle_data_table: writes out the specified particle data table to the output strategy
read_particle_data_table: reads a particle data table from the input strategy
operator<<,operator>>: overloaded to give the same results as any of the above methods

I0_BaseClass is the abstract base class defining the interface and syntax for input and output
strategies of events and particle data tables.
Several 10 strategies are supplied:

I0_GenEvent uses iostreams for input and output thereby providing a form of persistency
for the event record. This class handles all information found in a GenEvent object. This
class replaces IO_Ascii and reads both formats. Events may be contained within the same
file together with an unlimited number of comments. The examples (Section 7) make use of
this class.

IO _Ascii is deprecated.

IO _AsciiParticles writes events in a format similar to Pythia 6 output. This is intended for
human readability.

IO_HEPEVT reads and writes events to/from the Fortran HEPEVT common block. It re-
lies on a helper class HEPEVT Wrapper which is the interface to the common block (which is

10

defined in the header file HEPEVT _Wrapper.h®). This IO strategy provides the means for in-
terfacing to Fortran event generators. Other strategies which interface directly to the specific
event record of a generator could be easily implemented in this style. An example of using
IO_HEPEVT to transfer events from Pythia into HepMC is given in example_MyPythia.cc
(Section 7).

5 Overview of Iterators

Examples of using the particle/vertex iterators are provided in example_UsingIterators.cc (Sec-
tion 7).

5.1 HepMC::GenEvent::vertex_iterator

GenEvent::vertex_iterator inherits from std::iteratorjstd::forward_iterator _tag,...;. It walks through
all vertices in the event exactly once. It is robust and fast, and provides the best way to loop over
all vertices in the event. For each event, vertices_begin() and vertices_end() define the beginning
and one-past-the-end of the particle iterator respectively.

5.2 HepMC::GenEvent::vertex_const_iterator

A constant version of HepMC::GenEvent::vertex_iterator, otherwise identical.

5.3 HepMC::GenEvent::particle_iterator

GenEvent::particle_iterator inherits from std::iteratorjstd::forward _iterator tag,...;. It walks through
all particles in the event exactly once. It is robust and fast, and provides the best way to loop over
all particles in the event. For each event, particles_begin() and particles_end() define the beginning
and one-past-the-end of the particle iterator respectively.

5.4 HepMC::GenEvent::particle_const_iterator

A constant version of HepMC::GenEvent::particle_iterator, otherwise identical.

5.5 HepMC::GenVertex::vertex_iterator
NOTES AND CONVENTIONS
e the iterator range must be specified to instantiate - choices are: parents, children, family, ancestors,
descendants, and relatives
e note: iterating over all ancestors and all descendents is not necessarily equivalent to all relatives - this
is consitent with the range definitions

SDifferent conventions exist for the fortran HEPEVT common block. 4 or 8-byte floating point numbers may be
used, and the number of entries is often taken as 2000 or 4000. To account for all possibilities the precision (float or
double) and number of entries can be set for the wrapper at run time,

ie. HEPEVT _Wrapper::set_max_number_entries(4000);
HEPEVT _Wrapper::set_sizeof_real(8);

To interface properly to HEPEVT and avoid nonsensical results, it is essential to get these definitions right for your
application. See example_MyPythia.cc (Section 7) for an example.

11

GenVertex::vertex_iterator differs from GenEvent::vertex_iterator in that it has both a starting
point and a range. The starting point is the vertex - called the root - from which the iterator was
instantiated, and the range is defined relative to this point. The possible ranges are defined by an
enumeration called HepMC::IteratorRange and the possibilities are:

e parents: walks over all vertices connected to the root via incoming particles
e children: walks over all vertices connected to the root via outgoing particles
o family: walks over all vertices connected to the root via incoming or outgoing particles

e ancestors: walks over all vertices connected to the root via any number of incoming particle
edges - i.e. returns the parents, grandparents, great-grandparents, ...

e descendants: walks over all vertices connected to the root via any number of outgoing particle
edges - i.e. returns the children, grandchildren, great-grandchildren, ...

e relatives: walks over all vertices belonging to the same particle/vertex graph structure as the
700t

The iterator algorithm traverses the graph by converting it to a tree (by “chopping” the edges
at the point where a closed cycle connects to an already visited vertex) and returning the vertices
in post order. The iterator requires more logic than the GenEvent::vertex_iterator and thus access
time is slower (the required to return one vertex goes like log n where n is the number of vertices
already returned by the iterator).

GenVertex::vertex_iterator allows the user to step into a specific part of a particle/vertex graph
and obtain targetted information about it.

5.6 HepMC::GenVertex::particle_iterator
NOTES AND CONVENTIONS
e the iterator range must be specified to instantiate - choices are: parents, children, family, ancestors,
descendants, and relatives

GenVertex::particle_iterator behaves exactly like GenVertex::vertex _iterator, with the exception
that it returns particles rather than vertices. As a particle defines an edge or line (rather than a
point) in the particle/vertex graph, it is intuitive to define the particle_iterator relative to a vertex
(point in the graph) - thus the starting point (root) is still a vertex, and the range is defined relative
to this root. The extension to particles can be made by using the particle’s production or end vertex
as the root. Possible ranges are defined by an enumeration called HepMC::IteratorRange and the
possibilities are:

e parents: walks over all particles incoming to the root
e children: walks over all particles outgoing from the root
o family: walks over all particles incoming or outgoing from the root

e ancestors: walks over all incoming particles or particles incoming to ancestor vertices of the
root - i.e. returns the parents, grandparents, great-grandparents, ...

e descendants: walks over all outgoing particles or particles outgoing to descendant vertices
of the root - i.e. returns the children, grandchildren, great-grandchildren, . ..

e relatives: walks over all particles belonging to the same particle/vertex graph structure as
the root

The class is composed of a GenVertex::vertex_iterator - and the same considerations apply.

12

6 Building HepMC

Source code, binary and source code tarballs, bug tracking, etc. are all available from the HepMC
web pages [13] at https://savannah.cern.ch/projects/hepmc/.
Source code tarballs are on the download page: http://lcgapp.cern.ch/project/simu/HepMC/download/.

THE FOLLOWING RECIPE IS A GUIDELINE AND SHOULD BE MODIFIED ACCORDING TO TASTE.

download source code tarball:

mkdir cleanDIR: Make a new directory to work in.

cd cleanDIR:

tar -xzf HepMCtarball: Unwind the tarball you downloaded.

mkdir build install: Define directories for building and installation.

cd build: This is your real working directory.

../../HepMC-release/configure —prefix=../install: —prefiz tells the tools where to install the
library and headers. The default install location is /usr/local.

e make: Compile HepMC.

make check: Run the tests. This is optional but strongly recommended.
make install: Install everything in your specified directory.

Binary downloads are available for some releases.

7 Examples

Examples are provided in the examples directory of the package and are installed in the installation
directory under examples/HepMC. Tests, found in the test directory of the package, also provide
useful examples. The tests are not installed.

Using the HepMC vertex and particle iterators: example_Usinglterators.cc

Using HepMC with Pythia (Fortran): example_MyPythia.cc, example MyPythiaOnlyToHepMC.cc,
and example_PythiaParticle.cc

An Event Selection with Pythia Events: example_MyPythiaWithEventSelection.cc

Event Selection and Ascii IO example_EventSelection.cc

Using HepMC with Herwig: example MyHerwig.cc

Write an event file and then read it: example_MyPythiaRead.cc

Building an Event from Scratch in the HepMC Framework: example BuildEventFromScratch.cc

Verify that copying generated events behaves as expected: testHerwigCopies.cc and
testPythiaCopies.cc

All examples use IO_GenEvent instead of the deprecated 10 _Ascii.

8 Deprecated Classes

Two major classes have been deprecated: IO_Ascii and ParticleData. IO_Ascii is replaced by
10_GenEvent, which uses iostreams instead of files.

The ParticleData classes had become outmoded and would need a lot of work. Instead, we
recommend using packages already developed for this purpose, such as HepPDT [14].

13

8.1 HepMC::IO _Ascii (deprecated)
NOTES AND CONVENTIONS
e TO_Ascii reads and writes events and particle data tables to files in machine readable ascii, thereby
providing a form of persistency for the event record. Events and particle data tables may be contained
within the same file (recommend to write the particle data table first to save access time) together
with an unlimited number of comments. I0_GenEvent will read files written by IO _Ascii.

8.2 HepMC::ParticleData (deprecated)

RELEVANT DATA MEMBERS
name: std::string giving an ascii description of the particle type
pdg_id: unique ID integer denoting the particle type as defined by the PDG
charge: in fraction of proton charge
mass: in energy units
cxlifetime: particle lifetime in [mm]
e spin:
NOTES AND CONVENTIONS
e the lifetime can be set by specifying either the lifetime or the width
e cxlifetime=-1 specifies a stable particle (zero width)

Data for each particle type (mass, lifetime, charge, etc.) can be stored as particle data objects
for which a particle data table container is provided. There are no dependencies between the
particle data objects and the other elements of the event - the relationship exists only by means of
the particle id which is used to lookup information from within a particle data table. As such the
data table and event record are separate modular entities which need not be used in conjunction
(a user may choose to employ the event record while using his own particle data classes).

ParticleData class stores information about a particular particle type. It is intended that a

different ParticleData object is created for each particle and each anti-particle - necessary for CP

violation cases. The charge and spin are stored internally as integers representing prot*charge

photon spin
2

and respectively.

8.3 HepMC::ParticleDataTable (deprecated)

IMPORTANT PUBLIC METHODS

e find: returns the ParticleData instance with the specified pdg_id
operator[]: equivalent to find
insert: includes the specifed ParticleData instance in the table
erase: removes the specified ParticleData instance from the table but does not delete it
iterator/const_iterator: iterates over all entries in the table
make_antiparticles_from_particles: for each charged entry in the table, makes an equivalent entry
with opposite charge and pdg_id.
delete_all: removes all ParticleData instances from the table and deletes them

e merge_table: merges the entries from the specified ParticleDataTable if they are not already in the

current table

e print: gives a formatted printout of the table to the specified output stream
RELEVANT DATA MEMBERS

e description: ascii description of the table stored as std::string

e data_table: container of pointers to ParticleData instances mapped onto their associated pdg_id’s

ParticleDataTable is a container for ParticleData instances - it is basically just an interface to
an STL map, and STL naming conventions are employed. A ParticleData instance may belong to
any number of ParticleDataTables. The ParticleDataTable is not the owner of the ParticleData
instances and is not responsible for deleting them (though a delete_all method is provided). Two
ParticleData instances with identical pdg_.id’s are forbidden from entering the same ParticleDataT-
able.

14

9 Acknowlegements

We would like to acknowlege useful suggestions, consultations, and comments from: Ian Hinchliffe,
Pere Mato, H.T. Phillips, Anders Ryd, Maria Smizanska, and Brian Webber. R.D. Schaffer and
Lassi Tuura provided many useful suggestions on the package architecture. Thanks to Witold
Pokorski and Pere Mato for providing the fixes that make HepMC compile and run on Windows
with Microsoft Visual C++.

References

[1] M. Dobbs and J.B. Hansen, “The HepMC C++ Monte Carlo Event Record for High Energy
Physics”, Computer Physics Communications (to be published) [ATL-SOFT-2000-001].

[2] Pythia 8.1 available at http://www.thep.lu.se/ torbjorn/pythiaaux/present.html.

[3] Herwig++ 2.1 available at http://projects.hepforge.org/herwig/.

[4] E. Boos et al., “Generic user process interface for event generators,” arXiv:hep-ph/0109068.

[5] S.Protopopescu, “MC++ Interface”. Available from http://ox3.phy.bnl.gov /Serban /mcpp/index.html.

6] “A Class Library for High FEnergy Physics,” (CLHEP). Available from
http://wwwasd.web.cern.ch/wwwasd /lhc++/clhep/.

[7] Latest HepMC ChangeLog available at http://simu.cvs.cern.ch/cgi-
bin/simu.cgi/simu/HepMC/ChangeLog?view=markup.

[8] A.A. Stepanov, M. Lee, “The Standard Template Library,” Hewlett-Packard Labora-
tories Technical Report HPL-94-34, April 1994, revised July 7, 1995. Available from
ftp://butler.hpl.hp.com/stl/.

[9] T. Sjostrand et al., “High-energy physics event generation with PYTHIA 6.1,” Comput. Phys.
Commun. 135, 238 (2001).

[10] A. Ryd, D. Lange, “The EvtGen package for simulating particle decays,” Computing in High
Energy Physics, Chicago, Illinois, USA (1998).

[11] W.-M. Yao et al., “Review of particle physics,” Journal of Physics G33, 1 (2006). Available
from http://pdg.lbl.gov/.

[12] L. Garren, “StdHep 5.05 Monte Carlo Standardization at FNAL,” Fermilab PM0091. Available
from http://cepa.fnal.gov/psm/stdhep/.

[13] “a C++ Event Record for Monte Carlo Generators,” (HepMC). Available from
https://savannah.cern.ch /projects/hepmc/.

[14] HepPDT is available at http://savannah.cern.ch/projects/heppdt/.

15

HepMC::GenEvent

signal_process_id : int
event_number : int
HepMC::GenVertex

weights : Container<double> \
random_states : Container<long> =~ L position : FourVector
vertex_iterator() | id:int

weights : Container<double>

partilce_iterator()
particle_iterator(IteratorRange :)
vertex_iterator(IteratorRange :)

+end_vertex Qproduction_vertex

|
|
|
|
|
|
|
|
|
|
|
|
|

ﬁf‘" particles_out

+particles_in
HepMC::GenParticle

momentum : FourVector
generated_mass : double
pdg_id : int

status : int
flow : Container<Flow type, Flow index>

polarization : ThreeVector

HepMC::IO_HEPEVT

HepMC::10_BaseClass

read_next_event()

write_event() |
operator >>() Q\
~ HepMC::IO_GenEvent

operator <<()

Figure 3: Class diagrams for the event record classes (GenEvent, GenVertex, and GenParticle) and

the 1O strategies are shown in the UML notation.
16

