
MATHLIB 0.0.3 Review
Walter E. Brown

Marc Paterno

Table of Contents
1 Introduction ... 1

1.1 Mission and scope of this review ... 1
1.2 General impressions .. 2

2 Physical Organization .. 2
3 Build system .. 2
4 General Programming Practices ... 2

4.1 Design documentation ... 2
4.2 Need for explicit .. 3
4.3 Consistent naming .. 3
4.4 Resource management ... 3
4.5 Clear purpose for each class ... 3
4.6 Invariants .. 4
4.7 Forward declarations ... 4
4.8 Inclusion of headers .. 4
4.9 Namespaces .. 4
4.10 Feature testing .. 4

5 Detailed Analysis of Selected Packages ... 5
5.1 Special functions .. 5
5.2 General functions ... 5

6 Brief Analysis of Selected Packages ... 12
6.1 Integration .. 12
6.2 Differentiation ... 13

7 Conclusion .. 14

1 Introduction
1.1 Mission and scope of this review

We have been asked, on behalf of CMS, to review MATHLIB version 0.0.3. We address issues of
design and implementation, utilizing such criteria as:

• maintainability,

• extensibility, and

• adherence to "best practices."

We do not address coverage, because we recognize that this version of MATHLIB is a work in progess.

In order to produce a timely result, we have restricted our detailed attention to:

1

• the special functions implementations (SpecFunc), and

• the hierarchy rooted at IGenFunction (CppFunc).

We have given a somewhat less-detailed look to the other parts of the library, but believe our remarks
below are representative of the library in its entirety.

1.2 General impressions
In general, we find that the library makes appropriate use of both procedural and object-oriented C++.

However, there seems to be a tendency to view library components as a sequence of independently-operat-
ing parts. We would recommend a more cohesive perspective in which the library is viewed as a whole
and in which individual components are intended to provide functionality that can also be employed in
other parts of the library. We are strong advocates of the principle that "each programming unit (class,
function, etc.) has one purpose"; many of our recommendations below will lead directly in this direction.

2 Physical Organization
We believe the directory structure is quite appropriate. We found the hierarchy straightforward to com-
prehend and to navigate.

3 Build system
It is unclear what advantage is obtained by using Python as the scripting language to drive the building
of GSL and then MathCore. Since the build system depends on a bash-compatible shell, it would seem
a bash script would make fewer demands upon the user, who may not have Python available.

The script build.py seems to allow only only in-source build. We strongly prefer out-of-source
builds. Also, there seems to be no way to prevent the install from being done. We strongly prefer to
configure, then build, then test, and only install after testing.

The direct use of the configure scripts seems more convenient. They do allow out-of-source builds,
and also allow the user to control the time of installation.

We find the test facility inconvenient. It seems to support only in-source building of tests, requires
manual (as opposed to automated) running of the tests, and gives no report of success or failure. We
strongly prefer an out-of-source build, with automatic running of tests, and automatic analysis of the res-
ults -- providing the user with a clear and succinct statement of success or failure.

We note in passing that the static libraries build in the Windows/Cygwin environment, but the dynamic
libraries do not. Fixing this may be worth pursuing.

4 General Programming Practices
4.1 Design documentation

We note the apparent lack of a design document (i.e., a document that describes the design of each class,
and which gives a coherent overview of subsystems). This lack has hindered our efforts to understand
how some of the parts of the library are intended to operate alone and to co-operate with other compon-
ents in accomplishing user tasks. We believe that the lack of a design document is likely to lead to lack
of coherence in the design, and will make maintenance more difficult.

MATHLIB 0.0.3 Review

2

We suggest the creation of a "roadmap" document, describing the purpose of the library and of each
module, and describing important features of the design of each class. This should be a working docu-
ment -- one kept up-to-date as the library grows.

4.2 Need for explicit
There are several classes with single-argument constructors that could give rise to unexpected conver-
sions. Single-argument constructors are best declared explicit, unless it really does make sense, un-
der all circumstances, for a conversion to happen. (This recommendation applies equally to multi-ar-
gument constructors with default values.)

4.3 Consistent naming
We have found a number of code instances in which a common concept is spelled in a variety of ways.
Not only is there inconsistency in spelling, but also in the use of singular versus plural forms, and in the
lengths of the abbreviations used. We have found, for example:

• parameter

• Parameters

• par

• param

and so on. We recommend, instead, the uniform use of a single, consistent, spelling in all contexts that
name a single concept or entity. Not only is there less of a mental burden on developers and users (i,e.,
less to be remembered), it also reduces the likelihood of error -- we have found at least one case (see
ParamFunction, below) in which an inadvertant difference in spelling led to failure to override a virtual
function, and instead resulted in introduction of an unrelated non-virtual function. Consistent naming
would have helped to avoid this error.

4.4 Resource management
We have found instances of native (bare) pointer use that will lead to resource management errors in
case of exceptions, errors, or other corner cases. We prefer to use a managed pointer template to avoid
the use of use of bare pointers holding owned items.

Not only do well-designed and -documented smart pointers (managed pointer templates) exist, their use
has been shown to address these and related issues with little or no need for explicit coding beyond the
correct use of the template.

We have, in this document, refrained from introducing any managed pointers in our code snippets. We
did so in the interest of clarity, to emphasize the code's structure. In actual implementation, however, we
would give very strong consideration to the use of managed pointers wherever bare pointers are found.

4.5 Clear purpose for each class
Some classes have terse, cryptic names (e.g. CParamFunction). Especially when class names may
not be clear, we believe it is important that the header for each class contain brief documentation explan-
ing the purpose of the class.

If it is difficult to produce such a one- or two-sentence description, it is likely, in our experience, that the
class lacks cohesiveness.

MATHLIB 0.0.3 Review

3

4.6 Invariants
The purpose of some classes' member functions is unclear, and some implementations seem very com-
plex, because of absent or unclear class and function invariants. We recommend that each entity be doc-
umented with the invariant it establishes and maintains.

In general, we hold to the principle that objects should be immediately usable upon construction. We
strongly prefer that users not be required to construct and later configure an object (so-called two-phase
initialization).

4.7 Forward declarations
We strongly recommend against the practice that clients of a module forward-declare any of that mod-
ule's classes. Instead, when forward declarations are considered desirable, we urge the provider of the
module being used create a header file, suitable for client code to #include and which internally for-
ward-declares the appropriate name(s). (For example, the standard library provides iosfwd for such a
purpose.)

The advantage of the additional level of indirection is increased maintainability. For example, this al-
lows the implementer the latitude to rename the underlying class, to add template parameters with de-
fault values, or to change a class to a specialization of a template.

4.8 Inclusion of headers
We find that each of the source (.cpp) files in the subpackages SpecFunc and StatFunc fails to include
its respective headers. (Not all subpackages share this failure.)

We strongly urge that every source file that defines a function should include the header that declares
that function, unless the function is intended only to be used internally by that source file. (In our experi-
ence, the latter situation is relatively uncommon.)

4.9 Namespaces
Other than gsl code, We note that all the names defined in the MATHLIB product reside in a single
namespace: mathlib. Some "implementation details" reside in nested namespaces. We support the
practice of placing implementation details in nested namespaces.

We anticipate that, in the future, vendors will supply special functions in their implementations of the
Standard Library. To facilitate the future transition to use of these functions, we recommend that the
functions proposed for the Standard Library be separated into their own namespace. We recommend any
of the following names for this namespace: stdmathlib, tr1mathlib, or specfunc.

This will allow future use of a namespace alias in the SpecFunc.h header, with no need to
modify client code:

// This is the entirety of the future SpecFunc.h:
#include <cmath>
namespace stdmathlib = std;

Of course, client code using SpecFunc.h would require re-compilation.

4.10 Feature testing
We have noted several base classes that provide optional functionality, and so require users to inquire

MATHLIB 0.0.3 Review

4

whether a given instance of such a class provides that optional functionality. We believe this is a poor
design practice, as it leads to user code littered with functionality testing.

In an object-oriented design, it is generally considered a preferred practice to make us of inheritance of
interfaces (i.e., multiple inheritance) in such a way as to avoid the need for feature testing.

5 Detailed Analysis of Selected Packages
In this section, we consider in greater detail two of the packages in MATHLIB. We have selected
SpecFunc, because it is in a sense the "lowest level" of functionality provided. We have selected Cp-
pFunc because it seems to form the core of the functionality of MATHLIB -- several of the other pack-
ages manipulate instances of the classes found in CppFunc.

5.1 Special functions
We note that the proposed standard interfaces for these functions have been respected. This will facilit-
ate future transitions.

We note that only the double implementations, and not the float or long double, are provided
for the various functions. We regard this as a sensible first step, likely to suffice until implementations
conforming to the proposed standard are available from vendors.

However, it seems that the error-reporting facility of the special functions does not meet the proposed
standard. We recommend that, in the near future, these functions' implementations be revisited so as to
provide error-handling consistent with that specified by the draft TR1.

An implementation of the special functions conforming to this draft can return a NaN to indicate a do-
main error. We suggest that the wrappers in SpecFunc do so. An example implementation is:

double dNaN() { /* defined to return a NaN of type double */ }

double cyl_bessel_j(double nu, double x) {
if (x < 0.0) return dNaN() + 1.0; // See Notes 1 & 2
if (nu >= 128.0) return dNaN() + 1.0; // See Notes 2 & 3
double result = gs_sf_bessel_Jnu(nu, x);
return (/* GSL produced an error */)

? dNaN() + 1.0 // See Note 2
: result;

}

Note 1: The draft TR1 requires that negative values of x be excluded from the domain of
cyl_bessel_j.

Note 2: The construction dNaN() + 1.0 is suggested so that experiments (or users) who use the com-
mon floating-point processor facilities to mask floating-point exceptions can either (1) allow the
propagation of NaNs without a floating-point exception, or (2) cause a floating-point exception at the
point of the addition.

Note 3: We recommend the test on the value of nu for portability. Evaluation of the function for larger
values of nu yields "implementation-defined" behavior, and hence is inherently non-portable.

5.2 General functions
These functions are implemented in the module CppFunc. As previously noted, these classes seem not
to provide documentation of their intended purpose. We have therefore synthesized the apparent purpose

MATHLIB 0.0.3 Review

5

of several of these classes, based on their declarations and the behaviors these declarations permit.

• IGenFunction: an interface that represents a function of one argument, and provides for cloning
capability. It also provides gradient calculation, but we have discounted this since its default imple-
mentation (!) would give the wrong answer for most functions.

• IParamFunction: an interface representing a function of one argument and which function also
has zero or more bindable parameters. Via inheritance, it also presents the interface of IGenFunc-
tion.

• ParamFunction: an abstract base class that provides partial implementation of the IParam-
Function interface.

• CParamFunction: a concrete class wrapping a free functions of a particular signature,
(double, std::vector<double> const&). It implements the remainder of the IParam-
Function interface.

• Polynomial: represents a polynomial, presenting the IParamFunction interface.

We are uncertain that we have accurately captured the intended purposes of these classes.

We will later (A proposed refactoring) propose a modification of this hierarchy. First, we briefly discuss
some members of the hierarchy.

5.2.1 IGenFunction

This class is the root of the inheritance hierarchy. It is an abstract base class because it has pure vir-
tual members. But it is not a pure interface, because some of the virtual members have implementa-
tions. In addition, these implementations are inlined.

The inline definition of virtual members is of dubious value. The functions will rarely be inline-d
by the compiler, and never when used in the intended polymorphic fashion.

We also note the presence of the feature-testing function providesGradient.

5.2.2 IParamFunction

We note the presence of the feature-testing function `providesParamGradient.

5.2.3 ParamFunction

This class includes the function providesParameterGradient, which seems likely to be an acci-
dental misspelling of providesParamGradient declared in its IParamFunction base. This
highlights the importance of consistent naming, as noted above. The function providesParamet-
erGradient is not virtual, and ParamFunction retains the IParamFunction default implementa-
tion of providesParamGradient.

5.2.4 A proposed refactoring

We suggest a modification of the design so as to follow the non-virtual interface ("NVI") principle. We
believe such an approach is applicable and beneficial for several reasons:

• Some functions (such as operator()(double, std::vector<double> const&) in
ParamFunction) are clearly expressions of a non-virtual interface; there is no reason for any de-
rived class to implement this function differently.

MATHLIB 0.0.3 Review

6

• Other functions (such as setParameters(std::vector<double> const&) in IParam-
Function) would benefit from enforcement of class invariants for each subclass, which can be
provided automatically by the base class.

Furthermore, using NVI allows the the interfaces in the hierarchy to take their "natural form" for users,
while providing a distinct interface for specialization to implementers of subclasses.

Finally, the redesign allows for more flexibility. For example, it is straightforward under our proposed
design to provide tools which would allow the user to wrap any of the functions of SpecFunc in a class
that provides our equivalent of the IGenFunction interface -- and thus would allow their use with
Integration, Chebyshev, etc.

The following code samples sketch our proposed solution; we have shown code inline for exposition
purposes only.

// File IGeneralFunction.h
#ifndef MATHCORE_IGENERALFUNCTION_H
#define MATHCORE_IGENERALFUNCTION_H

class IGeneralFunction // IGF
{
// Interface for functions of one argument.

public:
virtual ~IGeneralFunction() { /**/ }

virtual IGeneralFunction * clone() const = 0;

double operator()(double x) const { return do_evaluateFunction(x); }

private:
virtual double do_evaluateFunction(double) const = 0;

}; // IGF

#endif // MATHCORE_IGENERALFUNCTION_H

// File IGradient.h
#ifndef MATHCORE_IGRADIENT_H
#define MATHCORE_IGRADIENT_H

class IGradient
{
// Interface for entities that supply a gradient.

public:
virtual ~IGradient() { /**/ }

double gradient(double x) const { return do_gradient(x); }

private:
virtual double do_gradient(double) const = 0;

}; // IGradient

#endif // MATHCORE_IGRADIENT_H

MATHLIB 0.0.3 Review

7

// File IParameterizedFunction.h
#ifndef MATHCORE_IPARAMETERIZEDFUNCTION_H
#define MATHCORE_IPARAMETERIZEDFUNCTION_H

#include "IGeneralFunction.h"
#include <vector>

typedef std::vector<double> dblvec; // exposition only

class IParameterizedFunction // IPF
: public virtual IGeneralFunction

{
// Interface for single-argument functions that have
// a fixed number of bindable parameters.

public:
virtual ~IParameterizedFunction() { /**/ }

virtual IParameterizedFunction * clone() const = 0;

void changeParameters(dblvec const & p) { do_changeParameters(p); }

size_t numberOfParameters() const { return do_numberOfParameters(); }

void fetchParameters(dblvec & p) const { return do_fetchParameters(p); }

using IGeneralFunction::operator();
double operator() (double x, dblvec const & p) {
changeParameters(p);
return operator()(x);

}

private:
virtual void do_changeParameters(dblvec const &) = 0;
virtual size_t do_numberOfParameters() const = 0;
virtual void do_fetchParameters(dblvec &) const = 0;
virtual double do_evaluateFunction(double) const = 0;

}; // IPF

// Notes:
//
// 1. In a class inheriting this interface, the changeParameters
// and do_changeParameters functions are permitted to throw
// an exception (e.g., functionConfigurationError) if the
// supplied dblvec's size is inappropriate.
//
// 2. If it is needed to support an interface to single-argument
// functions that have a variable number of bindable parameters,
// we recommend duplicating this class's interface and adjusting
// its public implementations so as to support this behavior.

#endif // MATHCORE_IPARAMETERIZEDFUNCTION_H

// File IGeneralFunctionWithGradient.h
#ifndef MATHCORE_IGENERALFUNCTIONWITHGRADIENT_H
#define MATHCORE_IGENERALFUNCTIONWITHGRADIENT_H

#include "IGeneralFunction.h"
#include "IGradient.h"

MATHLIB 0.0.3 Review

8

class IGeneralFunctionWithGradient // IGFwG
: public virtual IGeneralFunction
, public IGradient

{
// Interface for single-argument functions that also supply a gradient.

public:
virtual ~IGeneralFunctionWithGradient() { /**/ }

virtual IGeneralFunctionWithGradient * clone() const = 0;

void fdf(double x, double & f, double & df) const {
f = operator()(x);
df = gradient (x);

}

private:
virtual double do_evaluateFunction(double) const = 0;
virtual double do_gradient(double) const = 0;

}; // IGFwG

#endif // MATHCORE_IGENERALFUNCTIONWITHGRADIENT_H

// File IParameterizedFunctionWithGradient.h
#ifndef MATHCORE_IPARAMETERIZEDFUNCTIONWITHGRADIENT_H
#define MATHCORE_IPARAMETERIZEDFUNCTIONWITHGRADIENT_H

#include "IParameterizedFunction.h"
#include "IGeneralFunctionWithGradient.h"
#include <vector>

typedef std::vector<double> dblvec; // exposition only

class IParameterizedFunctionWithGradient // IPFwG
: public IParameterizedFunction
, public IGeneralFunctionWithGradient

{
// Interface for single-argument functions that also supply a gradient
// and that have bindable parameters,

public:
virtual ~IParameterizedFunctionWithGradient() { /**/ }

virtual IParameterizedFunctionWithGradient * clone() const = 0;

void parametersGradient(double x, dblvec & g) const {
do_parametersGradient(x, g);

}

private:
virtual double do_evaluateFunction(double) const = 0;
virtual void do_changeParameters(dblvec const &) = 0;
virtual size_t do_numberOfParameters() const = 0;
virtual void do_fetchParameters(dblvec &) const = 0;
virtual double do_gradient(double) const = 0;
virtual void do_parametersGradient(double, dblvec &) const = 0;

}; // IPFwG

#endif // MATHCORE_IPARAMETERIZEDFUNCTIONWITHGRADIENT_H

MATHLIB 0.0.3 Review

9

These five interfaces describe how "general functions" can be used, but none is a concrete class. The
current CppFunc contains two concrete classes as parts of this hierarchy: CParamFunction and
Polynomial.

It seems the purpose of CParamFunction is to wrap a pointer-to-function (of the appropriate signa-
ture) in the interface provided by IParamFunction. We believe this functionality can be provided
and extended under our proposed redesign. The extended flexiblity includes:

• the ability to wrap any callable object, not just free functions, and

• the ability to wrap objects with a wider variety of signatures.

We believe this can be achieved using a small set of class templates. The first, WrappedFunction,
can wrap any callable object with the correct signature: one argument, of type double. It implements
the IGeneralFunction interface.

// File WrappedFunction.h
#ifndef MATHCORE_WRAPPED_FUNCTION_H
#define MATHCORE_WRAPPED_FUNCTION_H

#include "IGeneralFunction.h"

template< class CALLABLE >
class WrappedFunction
: public IGeneralFunction

{
// Concrete class, wraps a callable object which takes one
// argument, and provides the IGeneralFunction interface.

public:
explicit WrappedFunction(CALLABLE f) : m_f(f) { /**/ }

virtual WrappedFunction * clone() const {
return new WrappedFunction(*this);

}

virtual ~WrappedFunction() { /**/ }

private:
CALLABLE m_f;

virtual double do_evaluateFunction(double x) const {
return m_f(x);

}
}; // WrappedFunction

#endif // MATHCORE_WRAPPED_FUNCTION_H

The second, WrappedParameterizedFunction, can wrap any callable object with the correct
signature: two arguments, the first a double, the second a std::vector<double> const&. This
is similar to the original CParamFunction, but does not require the callable object to be a free func-
tion.

// File WrappedParameterizedFunction.h
#ifndef MATHCORE_WRAPPEDPARAMETERIZEDFUNCTION_H

MATHLIB 0.0.3 Review

10

#define MATHCORE_WRAPPEDPARAMETERIZEDFUNCTION_H

#include "IParameterizedFunction.h"
#include <vector>

typedef std::vector<double> dblvec; // exposition only

template <class CALLABLE>
class WrappedParameterizedFunction
: public IParameterizedFunction

{
// Concrete class, wraps a callable object which takes two
// arguments, and provides the IParameterizedFunction interface.

public:
WrappedParameterizedFunction(CALLABLE f, dblvec const & p) :
m_f(f),
m_parameters(p)

{ /**/ }

virtual WrappedParameterizedFunction * clone() const {
return new WrappedParameterizedFunction(*this);

}

virtual ~WrappedParameterizedFunction() { /**/ }

private:
CALLABLE m_f;
dblvec m_parameters;

virtual double do_evaluateFunction(double x) const {
return m_f(x, m_parameters);

}

virtual void do_changeParameters(dblvec const & newparams) {
if(newparams.size() != numberOfParameters())
throw /* appropriate error */;

m_parameters = newparams;
}

virtual size_t do_numberOfParameters() const {
return m_parameters.size();

}

virtual void do_fetchParameters(dblvec & p) const {
p = m_parameters;

}

}; // WrappedParameterizedFunction

#endif // MATHCORE_WRAPPEDPARAMETERIZEDFUNCTION_H

Note that we do not suggest providing additional class templates to deal with "functions that also supply
gradients". This is, in part, because we expect pre-existing objects of this type to be uncommon. Further-
more, we would suggest that users who need the calculation of gradients rely on the Deriv package.
We believe this can be done with no loss of efficiency and with a significant gain in generality as de-
scribed in our analysis of Deriv (see Differentiation, below).

5.2.5 Chebyshev

The class Chebyshev, while part of the CppFunc module, is not a member of the IGenFunction
hierarchy. Rather, it is a user of the hierarchy.

MATHLIB 0.0.3 Review

11

Some of the overloaded functions (e.g., evalErr) are separated in the header, making it harder to no-
tice that they form an overload set.

Chebyshev seems partly designed for polymorphic use:

• it has a virtual destructor, and

• it has a protected function.

Other than destruction, Chebyshev appears to lack any potentially polymorphic functionality,
however. Why would one inherit from Chebyshev? Unless there is a reason we have missed, it seems
that the virtual destructor and protected function are not needed, and that the class is really not suit-
able for use as a base class. If there is a case for polymorphic use, then the functions which are intended
to be overridden in derived classes must be identified, and declared virtual.

The copy constructor and copy assignment operator are declared private, with a note that "usually
copying is non trivial." Nonetheless each function is implemented, and the implementations are unusual.
It would seem better, if copying is to be forbidden, to leave the declaration private and to provide no im-
plementation -- thus avoiding possibly erroneous use of these functions by other member functions.

It is not clear why copying is considered non-trivial. It seems that the meaning of copying a Cheby-
shev object is clear. What may be non-trivial is correct implementation of such copying. It seems that
insufficient attention has been paid to the design of the class's member objects, and to their management.
The contained bare pointers would be better replaced by pointer-like classes (see Resource manage-
ment_ above) which automate the memory management.

6 Brief Analysis of Selected Packages
In this section, we consider (more briefly) two of the packages that use the "core functionality" provided
by CppFunc. We have selected Integration and Deriv because they exemplify the use of the in-
terfaces provided by CppFunc.

6.1 Integration

6.1.1 IIntegrator

The Integration modules consist of a single concrete class, GSLIntegrator, which is also known
through a typedef as Integrator. This class is the sole class derived from the interface IInteg-
rator.

It seems that that the addition of this base class is premature. Since there is only a single class in the in-
heritance hierarchy, there is nothing for current users to gain from use of the base interface. Futhermore,
useful functionality of the GSLIntegrator class (such as the ability to set the integration rule via
setIntegrationRule) is not available through the base class. Until there are several more concrete
classes that perform integration available, it seems best to reduce the complexity of the library by re-
moving the IIntegrator interface. There seems to be no other part of MATHLIB that depends on
this interface.

6.1.2 GSLIntegrator

The class GSLIntegrator (also known through a typedef as Integrator) has a two-part inter-
face:

MATHLIB 0.0.3 Review

12

• one part is the interface inherited from IIntegrator, and

• the other part is expressed via member templates (which can not be virtual).

As noted above, we suggest removal of the base class IIntegrator.

We believe that the template members of GSLIntegrator are not needed. They seem to be present in
order to make it convenient to "wrap" a simple function. Instead, the wrappers suggested above (see A
proposed refactoring) provide this functionality. Relying upon those wrappers' functionality allows
GSLIntegrator to concentrate on the task of integration, making it significantly simpler and thus
easier to maintain or extend. We suggest the template members of GSLIntegrator be removed, and
that GSLIntegrator rely upon the interface IGeneralFunction.

We believe the following functions are sufficient to provide for filling the gsl_function struct
which is needed to call the C-language GSL integration routines used by GSLIntegrator.

// GSLstuff.cc

#include "IGeneralFunction.h"
#include "gsl/gsl_math.h"

extern "C"
double applyIGF(double x, void * p)
{
IGeneralFunction * igf_p = static_cast<IGeneralFunction *>(p);
return (*igf_p)(x);

}

void fillGSLFunction(IGeneralFunction const & igf, gsl_function & gsl_f)
{
gsl_f.function = & applyIGF;
gsl_f.params
= static_cast<void *>(const_cast<IGeneralFunction *>(& igf));

}

We note that this class has three constructors, each with default values provided for each constructor
parameter:

• Since each such constructor can be invoked with a single argument, it can be used to perform impli-
cit conversions. This behavior would, at best, surprise the unwary user, and so the noted contructors
should be declared explicit.

• Overload resolution will produce an ambiguity for such an overload set when default-construction is
attempted, and even when single-argument (of enum type) construction is attempted.

Futhermore, the utility of any default-contructed GSLIntegrator object is unclear to us.

6.2 Differentiation
Time did not permit us to investigate the module Deriv at the same level we investigated Integra-
tion. However, we wish to make the same point: Deriv should rely on the functionality provided by
the interfaces in CppFunc. Wrappers for user functions should be provided within CppFunc, not with-
in Deriv.

MATHLIB 0.0.3 Review

13

Because the CppFunc module presents interfaces which capture the concept of differentiation, it is pos-
sible to make the class which performs differentiation (1) employ (invoke) this functionality when
present, and (2) perform the work of numerical differentiation when it is not present. This allows users
to rely on one class to perform differentiation, and to obtain the efficiency of the analytic calculation
from those functions which provide it.

We believe the following sketch shows the key part of the implementation, making use of the IGradi-
ent interface from above.

#include "IGeneralFunction.h"
#include "IGradient.h"

class IDifferentiationWorker // etc.

class GSLDifferentiator
: public IDifferentiationWorker // etc.

class ExactDifferentiator
: public IDifferentiationWorker // etc. -- uses gradient()

class Differentiator
{
public:
Differentiator(IGeneralFunction const & igf)
: m_d_worker(0 == dynamic_cast<IGradient>(igf)

? new GSLDifferentiator (igf)
: new ExactDifferentiator(igf)
)

{ /**/ }

// other functions ...

private:
IDifferentiationWorker * m_d_worker;

}; // Differentiator

The class Differentiator (rather than Derivator) is the class users use to perform differenti-
ation. It depends on an interface class, IDifferentiationWorker, which presents the interface for
numerical differentiation. GSLDifferentiationWorker implements this interface, and uses the
gsl library to perform the numeric differentiation. (It is like the current GSLDerivator.) The class
ExactDifferentiator also implements this interface; this class contains a pointer to an object
having the IGradient interface, and calls upon this object to evaluate the derivative (ignoring the un-
needed step size).

7 Conclusion
We believe that version 0.0.3 of MATHLIB is a significant step forward in the design and implementa-
tion of the library. With modifications of the sort we have proposed, we believe the library will provide
a solid basis for the sorts of mathematical manipulations that will be needed for the work of CMS.

MATHLIB 0.0.3 Review

14

