MATHLIB 0.0.3 Review

Walter E. Brown
Marc Paterno

Table of Contents

IR oo (8 o 1o o PRSPPI 1
1.1 Mission and scope Of thiSTEVIEWccuuuiiiiiiiiiiiii e 1
1.2 GENEral IMPrESSIONS ...vuueieiti ettt ettt e ettt e et e e et e et e e eaa e e eenens 2
2 PhySiCal OrganiZatIONoiiieiiieieei ettt et e e 2
I =W] [IS (= o PRSP 2
4 General Programming PraCtiCESccuuiiiiiiiii et e e e e e e e e e e e e eees 2
4.1 DeSign dOCUMENEALIONuuuiiieeeeieeei e e e e e e e e e e e e e e et e e e eanaas 2
4.2 Need for @XPli Cit o e 3
4.3 CONSISLENE NAMING ...ueiiiti ettt ettt e et et ab e e e bt e e e eaen s 3
4.4 RESOUrCE MENBGEIMENLuueirtiieie ettt ettt e et e et e et e e e e e eenes 3
4.5 Clear purposefor €aCh Classoooouiiiiiiiii e 3
4.6 INVEITBNES ...ttt e e et e e e e e e e eeene 4
4.7 FOrward deClarationsccouverrruuiiie e 4
4.8 INCIUSION Of NEATEIS ...vuieei i e e e e e aaas 4
4.9 NBIMESPACESeevtnieeti ettt ettt e e et e et e et e et e e e e et n e e e e e eanas 4
410 FEAUMETESIING ..oeerteeiiiie ettt ettt ettt 4
5 Detailed Analysis of Selected PaCkagesoceuuiiiiiiiiiiii e 5
5.1 SPECial fFUNCLIONSiiiiiii e e e e e e e 5
5.2 General FUNCHIONScovviiiiiiieei i 5
6 Brief Analysis of Selected Packagesovvveiiiiiiiiiieec e 12
LN R 10115 = o] o PP UPPPT 12
6.2 DIffErentiationco.uiiiiiiiii e 13
A O 1 1ol [V Lo o IR PRSP PPPPPT 14

1 Introduction

1.1 Mission and scope of this review

We have been asked, on behalf of CMS, to review MATHLIB version 0.0.3. We address issues of
design and implementation, utilizing such criteria as:

e maintainability,

» extensility, and

» adherenceto "best practices.”

We do not address coverage, because we recognize that this version of MATHLIB isawork in progess.

In order to produce atimely result, we have restricted our detailed attention to:

MATHLIB 0.0.3 Review

» the special functions implementations (SpecFunc), and

» thehierarchy rooted at | GenFunct i on (CppFunc).

We have given a somewhat less-detailed look to the other parts of the library, but believe our remarks
below are representative of the library inits entirety.

1.2 General impressions

In general, we find that the library makes appropriate use of both procedural and object-oriented C++.

However, there seems to be atendency to view library components as a sequence of independently-operat-
ing parts. We would recommend a more cohesive perspective in which the library is viewed as a whole
and in which individual components are intended to provide functionality that can also be employed in
other parts of the library. We are strong advocates of the principle that "each programming unit (class,
function, etc.) has one purpose"; many of our recommendations below will lead directly in this direction.

2 Physical Organization

We believe the directory structure is quite appropriate. We found the hierarchy straightforward to com-
prehend and to navigate.

3 Build system

It is unclear what advantage is obtained by using Python as the scripting language to drive the building
of GSL and then MathCore. Since the build system depends on a bash-compatible shell, it would seem
abash script would make fewer demands upon the user, who may not have Python available.

The script bui | d. py seems to alow only only in-source build. We strongly prefer out-of-source
builds. Also, there seems to be no way to prevent the install from being done. We strongly prefer to
confi gur e, then build, then test, and only install after testing.

The direct use of the conf i gur e scripts seems more convenient. They do allow out-of-source builds,
and also allow the user to control the time of installation.

We find the test facility inconvenient. It seems to support only in-source building of tests, requires
manual (as opposed to automated) running of the tests, and gives no report of success or failure. We
strongly prefer an out-of-source build, with automatic running of tests, and automatic analysis of the res-
ults -- providing the user with a clear and succinct statement of success or failure.

We note in passing that the static libraries build in the Windows/Cygwin environment, but the dynamic
libraries do not. Fixing this may be worth pursuing.

4 General Programming Practices

4.1 Design documentation

We note the apparent lack of a design document (i.e., a document that describes the design of each class,
and which gives a coherent overview of subsystems). This lack has hindered our efforts to understand
how some of the parts of the library are intended to operate alone and to co-operate with other compon-
ents in accomplishing user tasks. We believe that the lack of a design document is likely to lead to lack
of coherence in the design, and will make maintenance more difficult.

MATHLIB 0.0.3 Review

We suggest the creation of a "roadmap" document, describing the purpose of the library and of each
module, and describing important features of the design of each class. This should be a working docu-
ment -- one kept up-to-date as the library grows.

4.2 Need forexplicit

There are several classes with single-argument constructors that could give rise to unexpected conver-
sions. Single-argument constructors are best declared expl i ci t, unlessit really does make sense, un-
der al circumstances, for a conversion to happen. (This recommendation applies equally to multi-ar-
gument constructors with default values.)

4.3 Consistent naming

We have found a number of code instances in which a common concept is spelled in a variety of ways.
Not only is there inconsistency in spelling, but also in the use of singular versus plura forms, and in the
lengths of the abbreviations used. We have found, for example:

e parameter
e Parameters
° par

s param

and so on. We recommend, instead, the uniform use of a single, consistent, spelling in al contexts that
name a single concept or entity. Not only is there less of a mental burden on developers and users (i,e.,
less to be remembered), it aso reduces the likelihood of error -- we have found at least one case (see
ParamFunction, below) in which an inadvertant difference in spelling led to failure to override a virtua
function, and instead resulted in introduction of an unrelated non-virtual function. Consistent naming
would have helped to avoid this error.

4.4 Resource management

We have found instances of native (bare) pointer use that will lead to resource management errors in
case of exceptions, errors, or other corner cases. We prefer to use a managed pointer template to avoid
the use of use of bare pointers holding owned items.

Not only do well-designed and -documented smart pointers (managed pointer templates) exist, their use
has been shown to address these and related issues with little or no need for explicit coding beyond the
correct use of the template.

We have, in this document, refrained from introducing any managed pointers in our code snippets. We
did so in the interest of clarity, to emphasize the code's structure. In actual implementation, however, we
would give very strong consideration to the use of managed pointers wherever bare pointers are found.

4.5 Clear purpose for each class

Some classes have terse, cryptic names (e.g. CPar anfunct i on). Especialy when class names may
not be clear, we believe it isimportant that the header for each class contain brief documentation explan-
ing the purpose of the class.

If it isdifficult to produce such a one- or two-sentence description, it islikely, in our experience, that the
class lacks cohesiveness.

4.6

4.7

4.8

4.9

4.10

MATHLIB 0.0.3 Review

Invariants

The purpose of some classes member functions is unclear, and some implementations seem very com-
plex, because of absent or unclear class and function invariants. We recommend that each entity be doc-
umented with the invariant it establishes and maintains.

In general, we hold to the principle that objects should be immediately usable upon construction. We
strongly prefer that users not be required to construct and later configure an object (so-called two-phase
initialization).

Forward declarations

We strongly recommend against the practice that clients of a module forward-declare any of that mod-
ule's classes. Instead, when forward declarations are considered desirable, we urge the provider of the
module being used create a header file, suitable for client code to #i ncl ude and which internaly for-
ward-declares the appropriate name(s). (For example, the standard library providesi osf wd for such a
purpose.)

The advantage of the additional level of indirection is increased maintainability. For example, this al-
lows the implementer the latitude to rename the underlying class, to add template parameters with de-
fault values, or to change a class to a specialization of atemplate.

Inclusion of headers

We find that each of the source (.cpp) files in the subpackages SpecFunc and SatFunc fails to include
its respective headers. (Not all subpackages share thisfailure.)

We strongly urge that every source file that defines a function should include the header that declares
that function, unless the function isintended only to be used internally by that source file. (In our experi-
ence, the latter situation is relatively uncommon.)

Namespaces

Other than gs!| code, We note that all the names defined in the MATHLIB product reside in a single
namespace: mat hl i b. Some "implementation details' reside in nested namespaces. We support the
practice of placing implementation details in nested namespaces.

We anticipate that, in the future, vendors will supply specia functions in their implementations of the
Standard Library. To facilitate the future transition to use of these functions, we recommend that the
functions proposed for the Standard Library be separated into their own namespace. We recommend any
of the following names for this namespace: st drmat hl i b,tr 1nmat hl i b, or specf unc.

This will alow future use of a nanespace al i as in the SpecFunc. h header, with no need to
modify client code:

/1 This is the entirety of the future SpecFunc. h:
#i ncl ude <cmat h>
nanespace stdmathlib = std;

Of course, client code using SpecFunc. h would require re-compilation.

Feature testing

We have noted severa base classes that provide optional functionality, and so require users to inquire

MATHLIB 0.0.3 Review

whether a given instance of such a class provides that optiona functionality. We believe this is a poor
design practice, asit leads to user code littered with functionality testing.

In an object-oriented design, it is generally considered a preferred practice to make us of inheritance of
interfaces (i.e., multiple inheritance) in such away asto avoid the need for feature testing.

5 Detailed Analysis of Selected Packages

In this section, we consider in greater detail two of the packages in MATHLIB. We have selected
SpecFunc, because it isin a sense the "lowest level" of functionality provided. We have selected Cp-
pFunc because it seems to form the core of the functionality of MATHL B -- several of the other pack-
ages manipulate instances of the classes found in CppFunc.

5.1 Special functions

We note that the proposed standard interfaces for these functions have been respected. This will facilit-
ate future transitions.

We note that only the doubl e implementations, and not the f | oat or | ong doubl e, are provided
for the various functions. We regard this as a sensible first step, likely to suffice until implementations
conforming to the proposed standard are available from vendors.

However, it seems that the error-reporting facility of the specia functions does not meet the proposed
standard. We recommend that, in the near future, these functions implementations be revisited so as to
provide error-handling consistent with that specified by the draft TRL1.

An implementation of the special functions conforming to this draft can return a NaN to indicate a do-
main error. We suggest that the wrappersin SpecFunc do so. An example implementation is:

double dNaN() { /* defined to return a NaN of type double */ }

doubl e cyl bessel j(double nu, double x) {
if (x <0.0) return dNaN() + 1.0; /1l See Notes 1 & 2
if (nu>=128.0) return dNaN() + 1.0; // See Notes 2 & 3
doubl e result = gs_sf _bessel Jnu(nu, x);
return (/* GSL produced an error */)

? dNaN() + 1.0 /1 See Note 2

. result;

Note 1. The draft TR1 requires that negative values of x be excluded from the domain of
cyl bessel j.

Note 2: The construction dNaN() + 1. 0 issuggested so that experiments (or users) who use the com-
mon floating-point processor facilities to mask floating-point exceptions can either (1) allow the
propagation of NaNs without a floating-point exception, or (2) cause a floating-point exception at the
point of the addition.

Note 3: We recommend the test on the value of nu for portability. Evaluation of the function for larger
values of nu yields "implementation-defined" behavior, and hence isinherently non-portable.

5.2 General functions

These functions are implemented in the module CppFunc. As previously noted, these classes seem not
to provide documentation of their intended purpose. We have therefore synthesized the apparent purpose

5.2.1

5.2.2

5.2.3

5.24

MATHLIB 0.0.3 Review

of several of these classes, based on their declarations and the behaviors these declarations permit.

* | GenFuncti on: an interface that represents a function of one argument, and provides for cloning
capability. It also provides gradient calculation, but we have discounted this since its default imple-
mentation (!) would give the wrong answer for most functions.

» | Paranfunct i on: an interface representing a function of one argument and which function also
has zero or more bindable parameters. Viainheritance, it also presents the interface of | GenFunc-
tion.

* Parantuncti on: an abstract base class that provides partial implementation of the | Par am
Funct i on interface.

e CParanfunction: a concrete class wrapping a free functions of a particular signature,
(doubl e, std::vector<doubl e> const &) . It implements the remainder of the | Par am
Funct i on interface.

e Pol ynomi al : represents a polynomial, presenting the | Par anfunct i on interface.

We are uncertain that we have accurately captured the intended purposes of these classes.

We will later (A proposed refactoring) propose a modification of this hierarchy. First, we briefly discuss
some members of the hierarchy.

| GenFuncti on

This class is the root of the inheritance hierarchy. It is an abstract base class because it has pure vi r -
t ual members. But it is not a pure interface, because some of the virtual members have implementa-
tions. In addition, these implementations are inlined.

Thei nl i ne definition of virtual members is of dubious value. The functions will rarely bei nl i ne-d
by the compiler, and never when used in the intended polymorphic fashion.

We also note the presence of the feature-testing function pr ovi desGr adi ent .

| Par anfuncti on

We note the presence of the feature-testing function ™ pr ovi desPar anGr adi ent .

Par anfunct i on

This class includes the function pr ovi desPar anet er G adi ent , which seems likely to be an acci-
dental misspelling of provi desPar anmGr adi ent declared in its | Par anfFunct i on base. This
highlights the importance of consistent naming, as noted above. The function pr ovi desPar anet -
er G adi ent isnot virtual, and ParamFunction retains the | Par anfFunct i on default implementa-
tion of pr ovi desPar antx adi ent .

A proposed refactoring

We suggest a modification of the design so as to follow the non-virtual interface ("NVI") principle. We
believe such an approach is applicable and beneficial for several reasons:

e Some functions (such as operator () (doubl e, std::vector<double> const&) in
Par anfunct i on) are clearly expressions of a non-virtual interface; there is no reason for any de-
rived class to implement this function differently.

MATHLIB 0.0.3 Review

e Other functions (such as set Par anet er s(st d: : vect or <doubl e> const &) in| Param
Funct i on) would benefit from enforcement of class invariants for each subclass, which can be
provided automatically by the base class.

Furthermore, using NVI allows the the interfaces in the hierarchy to take their "natural form" for users,
while providing a distinct interface for specialization to implementers of subclasses.

Finally, the redesign allows for more flexibility. For example, it is straightforward under our proposed
design to provide tools which would allow the user to wrap any of the functions of SpecFunc inaclass
that provides our eguivalent of the | GenFunct i on interface -- and thus would alow their use with
I nt egration, Chebyshev, etc.

The following code samples sketch our proposed solution; we have shown code inline for exposition
purposes only.

/] File |ICGeneral Function. h
#i f ndef MATHCORE_| GENERALFUNCTI ON_H
#defi ne MATHCORE_ | GENERALFUNCTI ON_H
class | General Function // 1GF
/1 Interface for functions of one argument.

public:
virtual ~lCeneral Function() { /**/ }

virtual |General Function * clone() const = 0;

doubl e operator()(double x) const { return do_eval uat eFunction(x); }

private:
virtual doubl e do_eval uat eFuncti on(double) const = O;
Yoo 11 IGF

#endi f // MATHCORE_| GENERALFUNCTI ON_H

/!l File | Gradient.h

#i f ndef MATHCORE | GRADI ENT_H
#def i ne MATHCORE | GRADI ENT_H
class | Gradi ent

/1 Interface for entities that supply a gradient.

public:
virtual ~IGadient() { /**/ }

doubl e gradi ent(double x) const { return do_gradient(x); }

private:
virtual double do_gradient(double) const = O;

}; 1/ 1Gadient
#endi f // MATHCORE_| GRADI ENT_H

MATHLIB 0.0.3 Review

/1 File | Paraneteri zedFunction. h
#i f ndef MATHCORE | PARAMETERI ZEDFUNCTI ON_H
#def i ne MATHCORE_| PARAMETERI ZEDFUNCTI ON_H

#i ncl ude "I Gener al Functi on. h"
#i ncl ude <vector>

typedef std::vector<double> dblvec; // exposition only

cl ass | Paranmeteri zedFunction // |PF
public virtual |General Function

/1 Interface for single-argunent functions that have
/1 a fixed nunber of bindable paraneters.

public:
virtual ~lParameterizedFunction() { /**/ }

virtual |ParaneterizedFunction * clone() const = O;

voi d changePar aneters(dblvec const & p) { do_changeParaneters(p); }
size_t nunber O Paraneters() const { return do_nunberOf Paranmeters(); }

void fetchParameters(dblvec & p) const { return do_fetchParanmeters(p); }

usi ng | General Functi on: : operator();

doubl e operator() (double x, dblvec const & p) {
changePar anet er s(p) ;
return operator()(x);

private:
virtual void do_changeParaneters(dblvec const &) = O;
virtual size_t do_nunber O Parameters() const = O;
virtual void do_fetchParanmeters(dblvec &) const = O;
virtual doubl e do_eval uat eFuncti on(double) const = O;

/1l I PF
Not es:

/

/

/ 1. In a class inheriting this interface, the changeParaneters
/ and do_changeParaneters functions are pernmitted to throw

/ an exception (e.g., functionConfigurationError) if the

/ supplied dblvec's size is inappropriate.
/

/

/

/

/

2. If it is needed to support an interface to single-argunent
functions that have a variabl e nunber of bindable paraneters,
we recommend duplicating this class's interface and adjusting
its public inplementations so as to support this behavior.

#endi f // MATHCORE_| PARAMETERI ZEDFUNCTI ON_H

!/l File | General Functi onWthG adi ent. h
#i f ndef MATHCORE | GENERALFUNCTI ONW THGRADI ENT_H
#defi ne MATHCORE | GENERALFUNCTI ONW THGRADI ENT_H

#i ncl ude "1 General Functi on. h"
#i ncl ude "I G adi ent. h"

MATHLIB 0.0.3 Review

class | General FunctionWthG adient // |1GWwWG
: public virtual |General Function
, public |G adient

/1 Interface for single-argunent functions that also supply a gradient.

public:
virtual ~lGeneral FunctionWthGadient() { /**/ }

virtual | General Functi onWthG adient * clone() const = O;

void fdf (double x, double & f, double & df) const {
f = operator()(x);
df = gradient (Xx);
}
private:

virtual double do_eval uat eFuncti on(double) const = O;
virtual double do_gradient(double) const = O;

Y. /11 GFwG
#endi f // MATHCORE_| GENERALFUNCTI ONW THGRADI ENT_H

/1 File | Paraneteri zedFuncti onWthG adi ent. h
#i f ndef MATHCORE | PARAMETERI ZEDFUNCTI ONW THGRADI ENT_H
#defi ne MATHCORE | PARAMETERI ZEDFUNCTI ONW THGRADI ENT_H

#i nclude "I ParaneterizedFunction. h"
#i ncl ude "1 General Functi onWthG adi ent. h"
#i ncl ude <vector>
typedef std::vector<doubl e> dblvec; // exposition only
class | ParaneterizedFuncti onWthG adient // |PFWG
public | ParaneterizedFunction
, public | General Functi onWthG adi ent

/1 Interface for single-argument functions that al so supply a gradient
/1 and that have bindabl e paraneters,

publi c:
virtual ~lParameterizedFunctionWthGadient() { /**/ }

virtual |ParaneterizedFuncti onWthG adient * clone() const = O;

voi d paranetersG adi ent(double x, dblvec & g) const {
do_paranetersGadi ent(x, g);

private:
virtual double do_eval uat eFuncti on(double) const = O;
virtual void do_changeParaneters(dblvec const &) = 0O;

virtual size_t do_nunber O Parameters() const = O;

virtual void do_fetchParanmeters(dblvec &) const = O;

virtual double do_gradient(double) const = O;

virtual void do_paramnetersG adi ent(double, dblvec &) const = O;

}: /1 | PFwG
#endi f // MATHCORE_| PARAVETER! ZEDFUNCTI ONW THGRADI ENT_H

MATHLIB 0.0.3 Review

These five interfaces describe how "general functions' can be used, but none is a concrete class. The
current CppFunc contains two concrete classes as parts of this hierarchy: CPar anfuncti on and
Pol ynoni al .

It seems the purpose of CPar anfunct i on isto wrap a pointer-to-function (of the appropriate signa-
ture) in the interface provided by | Par anfFunct i on. We bdlieve this functionality can be provided
and extended under our proposed redesign. The extended flexiblity includes:

 theability to wrap any callable object, not just free functions, and

 the ability to wrap objects with awider variety of signatures.

We believe this can be achieved using a small set of class templates. The first, W appedFunct i on,
can wrap any callable object with the correct signature: one argument, of type doubl e. It implements
thel Gener al Funct i on interface.

/1 File WappedFunction.h
#i f ndef MATHCORE_WRAPPED FUNCTI ON_H
#def i ne MATHCORE_WRAPPED FUNCTI ON_H

#i ncl ude "1 General Functi on. h"
templ at e< cl ass CALLABLE >
cl ass WappedFuncti on

public I General Functi on

/1 Concrete class, waps a callable object which takes one
/1 argument, and provides the | General Function interface.

public:
explicit WappedFunction(CALLABLE f) : mf(f) { /**/ }

virtual WappedFunction * clone() const {
return new WappedFunction(*this);

}

virtual ~WappedFunction() { /**/ }
private:

CALLABLE m f;

virtual double do_eval uat eFuncti on(double x) const {
return mf(x);

}
}; [/ WappedFunction
#endi f // MATHCORE _WRAPPED FUNCTI ON _H

The second, W appedPar anet eri zedFunct i on, can wrap any callable object with the correct
signature: two arguments, the first adoubl e, the second ast d: : vect or <doubl e> const & This
is similar to the original CPar anfFunct i on, but does not require the callable object to be a free func-
tion.

/1 File WappedParaneterizedFunction.h
#i f ndef MATHCORE WRAPPEDPARAMETERI ZEDFUNCTI ON_H

10

MATHLIB 0.0.3 Review

#defi ne MATHCORE_WRAPPEDPARAMETERI ZEDFUNCTI ON_H

#i ncl ude "I Par anmet eri zedFuncti on. h"
#i ncl ude <vector>

t ypedef std::vector<double> dblvec; // exposition only
tenpl ate <cl ass CALLABLE>
cl ass W appedPar anet eri zedFuncti on

public | ParaneterizedFunction

/1 Concrete class, waps a callable object which takes two
/1 argunments, and provides the | ParaneterizedFunction interface.

public:
W appedPar anet eri zedFuncti on(CALLABLE f, dblvec const & p)
mf(f),
m paraneters(p)
{ 1**1}

virtual WappedParaneterizedFunction * clone() const {
return new WappedPar anet eri zedFunction(*this);

}

virtual ~WappedParaneterizedFunction() { /**/ }
private:

CALLABLE m f;

dbl vec m par anet ers;

virtual double do_eval uat eFuncti on(double x) const {
return mf(x, mparaneters);
}

virtual void do_changeParaneters(dblvec const & newparamnms) ({
i f(newparans.size() != nunber Of Paraneters())
throw /* appropriate error */;
m_par amet ers = newpar amns;

virtual size_t do_number O Paraneters() const {
return m paraneters.size();
}

virtual void do fetchParaneters(dblvec & p) const {
p = m_paraneters;
}

}; I/ WappedParanet eri zedFuncti on

#endi f // MATHCORE_WRAPPEDPARAMETERI ZEDFUNCTI ON_H

Note that we do not suggest providing additional class templates to deal with "functions that also supply
gradients'. Thisis, in part, because we expect pre-existing objects of this type to be uncommon. Further-
more, we would suggest that users who need the calculation of gradients rely on the Der i v package.
We believe this can be done with no loss of efficiency and with a significant gain in generality as de-
scribed in our analysis of Der i v (see Differentiation, below).

5.2.5 Chebyshev

The class Chebyshev, while part of the CopFunc module, is not a member of the | GenFunct i on
hierarchy. Rather, it isauser of the hierarchy.

11

MATHLIB 0.0.3 Review

Some of the overloaded functions (e.g., eval Er r) are separated in the header, making it harder to no-
tice that they form an overload set.

Chebyshev seems partly designed for polymorphic use:

e it hasavirtual destructor, and

» ithasapr ot ect ed function.

Other than destruction, Chebyshev appears to lack any potentially polymorphic functionality,
however. Why would one inherit from Chebyshev? Unless there is a reason we have missed, it seems
that the virtual destructor and pr ot ect ed function are not needed, and that the class is really not suit-
able for use as a base class. If thereis a case for polymorphic use, then the functions which are intended
to be overridden in derived classes must be identified, and declared vi r t ual .

The copy constructor and copy assignment operator are declared pri vat e, with a note that "usually
copying is non trivial." Nonetheless each function is implemented, and the implementations are unusual.
It would seem better, if copying isto be forbidden, to leave the declaration private and to provide no im-
plementation -- thus avoiding possibly erroneous use of these functions by other member functions.

It is not clear why copying is considered non-trivial. It seems that the meaning of copying a Cheby-
shev object is clear. What may be non-trivia is correct implementation of such copying. It seems that
insufficient attention has been paid to the design of the class's member objects, and to their management.
The contained bare pointers would be better replaced by pointer-like classes (see Resource manage-
ment__ above) which automate the memory management.

6 Brief Analysis of Selected Packages

In this section, we consider (more briefly) two of the packages that use the "core functionality" provided
by CppFunc. We have selected | nt egr ati on and Der i v because they exemplify the use of the in-
terfaces provided by CppFunc.

Integration

I I nt egr at or

The Integration modules consist of a single concrete class, GSLI nt egr at or, which is aso known
through at ypedef asl nt egr at or. Thisclassisthe sole class derived from the interface | | nt eg-
rator.

It seems that that the addition of this base class is premature. Since thereis only asingle classin thein-
heritance hierarchy, there is nothing for current users to gain from use of the base interface. Futhermore,
useful functionality of the GSLI nt egr at or class (such as the ability to set the integration rule via
set I nt egrati onRul e) isnot available through the base class. Until there are several more concrete
classes that perform integration available, it seems best to reduce the complexity of the library by re-
moving the | I nt egr at or interface. There seems to be no other part of MATHLIB that depends on
thisinterface.

6.1.2 GSLI nt egr at or

The class GSLI nt egr at or (aso known through at ypedef as| nt egr at or) has a two-part inter-
face:

12

MATHLIB 0.0.3 Review

» onepartistheinterface inherited from I | nt egr at or, and

» theother part is expressed via member templates (which can not bevi r t ual).

As noted above, we suggest removal of the base class| | nt egr at or .

We believe that the template members of GSLI nt egr at or are not needed. They seem to be present in
order to make it convenient to "wrap" a simple function. Instead, the wrappers suggested above (see A
proposed refactoring) provide this functionality. Relying upon those wrappers functionality allows
GSLI nt egr at or to concentrate on the task of integration, making it significantly simpler and thus
easier to maintain or extend. We suggest the template members of GSLI nt egr at or be removed, and
that GSLI nt egr at or rely upontheinterface| Gener al Functi on.

We believe the following functions are sufficient to provide for filling the gsl _f uncti on struct
which is needed to call the C-language GSL integration routines used by GSLI nt egr at or .

/'l GSLstuff.cc

#i ncl ude "I Gener al Functi on. h"
#i ncl ude "gsl/gsl_math. h"

extern "C'
doubl e applyl G-(double x, void * p)

| General Function * igf_p = static_cast<l| General Function *>(p);
return (*igf_p)(x);

void fill GSLFunction(|General Function const & igf, gsl _function & gsl _f)

gsl _f.function = & appl yl G
gsl _f. parans
= static_cast<void *>(const_cast<l General Function *>(& igf));

We note that this class has three constructors, each with default values provided for each constructor
parameter:

» Since each such constructor can be invoked with a single argument, it can be used to perform impli-
cit conversions. This behavior would, at best, surprise the unwary user, and so the noted contructors
should be declared expl i ci t .

e Overload resolution will produce an ambiguity for such an overload set when default-construction is
attempted, and even when single-argument (of enumtype) construction is attempted.

Futhermore, the utility of any default-contructed GSLI nt egr at or object isunclear to us.

6.2 Differentiation

Time did not permit us to investigate the module Der i v at the same level we investigated | nt egr a-
t i on. However, we wish to make the same point: Der i v should rely on the functionality provided by
the interfaces in CppFunc. Wrappers for user functions should be provided within CppFunc, not with-
inDeriv.

13

MATHLIB 0.0.3 Review

Because the CppFunc module presents interfaces which capture the concept of differentiation, it is pos-
sible to make the class which performs differentiation (1) employ (invoke) this functionality when
present, and (2) perform the work of numerical differentiation when it is not present. This alows users
to rely on one class to perform differentiation, and to aobtain the efficiency of the analytic calculation
from those functions which provide it.

We believe the following sketch shows the key part of the implementation, making use of the | Gr adi -
ent interface from above.

#i ncl ude "1 General Functi on. h"
#i ncl ude "I G adi ent. h"

class IDifferentiati onWorker // etc.

class GSLDi ffe
: [

renti at or
public IDff

erentiati onWwrker // etc.

class ExactDifferentiator
public ID fferentiationWrker // etc. -- uses gradient()

class Differentiator

{
public:
Differentiator(|General Functi on const & igf)
: md worker(0 == dynam c_cast<l G adient>(igf)
? new GSLDifferentiator (igf)
new ExactDi fferentiator(igf)
{ 1>}

/] other functions ...

priva

i vate:
IDiff

erentiati onWwbrker * m.d_worker;

}; // Differentiator

Theclass Di fferenti at or (rather than Der i vat or) is the class users use to perform differenti-
ation. It depends on an interface class, | Di f f er ent i at i onWr ker , which presents the interface for
numerica differentiation. GSLDi f f er ent i at i onWor ker implements this interface, and uses the
gsl library to perform the numeric differentiation. (It is like the current GSLDer i vat or.) The class
Exact Di f ferenti at or also implements this interface; this class contains a pointer to an object
having the | Gr adi ent interface, and calls upon this object to evaluate the derivative (ignoring the un-
needed step size).

7 Conclusion

We believe that version 0.0.3 of MATHLIB is asignificant step forward in the design and implementa-
tion of the library. With modifications of the sort we have proposed, we believe the library will provide
asolid basis for the sorts of mathematical manipulations that will be needed for the work of CMS.

14

