
Tutorial for DMTCP Plugins

March, 2013

Contents

1 Introduction 1

2 Anatomy of a plugin 2

3 Writing Plugins 2
3.1 Invoking a plugin . 2
3.2 The plugin mechanisms . 2

3.2.1 Plugin events . 3
3.2.2 Plugin wrapper functions . 3
3.2.3 Plugin coordination among multiple or distributed processes 4
3.2.4 Using plugins to virtualize ids . 4

4 Writing Plugins that Virtualize IDs and Other Names 5

5 Caveats 5

A Appendix: Plugin Manual 5
A.1 Plugin events . 5

A.1.1 dmtcp process event . 5
A.1.2 NEXT DMTCP PROCESS EVENT . 6
A.1.3 Event Names . 6

A.2 Publish/Subscribe . 8
A.3 Wrapper functions . 8
A.4 Miscellaneous utility functions . 8

1 Introduction

This is a reminder that there are more boldface below here.
Also, see the comments in the LaTeX file for smaller issues for the 2.0 release.
Also, must then create plugin-tutorial.pdf, and add to svn

Plugins enable one to modify the behavior of DMTCP. Two of the most common uses of plugins are:

1. to execute an additional action at the time of checkpoint, resume, or restart.

2. to add a wrapper function around a call to a library function (including wrappers around system calls).

Plugins are used for a variety of purposes. The DMTCP ROOT/contrib directory contains packages that
users have contributed to be used as part of DMTCP. Several of these packaages are based on DMTCP
plugins. These include:

1

1. a plugin to adapt DMTCP to automatically checkpoint and restart in conjunction with the TORQUE
batch queue system.

2. ADD WHEN COMPLETE: a plugin to adapt DMTCP to automatically checkpoint and restart
in conjunction with the Condor system for high throughput computing.

3. ADD WHEN COMPLETE: a plugin that allows DMTCP to checkpoint QEMU/KVM.

4. ADD WHEN COMPLETE: record-replay plugin (later)

5. ADD WHEN COMPLETE: a package to adapt I/O to different environments, when a DMTCP
checkpoint image is restarted with a modified filesystem, on a new host, etc.

6. ADD WHEN COMPLETE: a plugin that allows a Python program to call a Python function to
checkpoint itself.

7. ADD WHEN COMPLETE: a plugin that enables one to checkpoint over the network to a remote
file.

Plugin code is expressive, while requiring only a modest number of lines of code. The plugins in the
contrib directory vary in size from FILL IN to 1500 lines of code to implement a plugin for the Torque
batch queue.

Beginning with DMTCP version 2.0, much of DMTCP itself is also now a plugin. In this new de-
sign, the core DMTCP code is responsible primarily for copying all of user space memory to a checkpoint
image file. The remaining functions of DMTCP are handled by plugins, found in DMTCP ROOT/plugin.
Each plugin abstracts the essentials of a different subsystem of the operating system and modifies its
behavior to accommodate checkpoint and restart. Some of the subsystems for which plugins have been
written are: virtualization of process and thread ids; files(open/close/dup/fopen/fclose/mmap/pty); events
(eventfd/epoll/poll/inotify/signalfd); System V IPC constructs (shmget/semget/msgget); TCP/IP sockets
(socket/connect/bind/listen/accept); and timers (timer create/clock gettime). (The indicated system calls
are examples only and not all-inclusive.)

2 Anatomy of a plugin

There are three primary mechanisms by which a plugin can modify the behavior of either DMTCP or a
target application.

Wrapper functions: One declares a wrapper function with the same name as an existing library function
(including system calls in the run-time library). The wrapper function can execute some prolog code,
pass control to the “real” function, and then execute some epilog code. Several plugins can wrap the
same function in a nested manner. One can also omit passing control to the “real” function, in order
to shadow that function with an alternate behavior.

Events: It is frequently useful to execute additional code at the time of checkpoint, or resume, or restart.
Plugins provide hook functions to be called during these three events and numerous other important
events in the life of a process.

Coordinated checkpoint of distributed processes: DMTCP transparently checkpoints distributed com-
putations across many nodes. At the time of checkpoint or restart, it may be necessary to coordinate
information among the distributed processes. For example, at restart time, an internal plugin of
DMTCP allows the newly re-created processes to “talk” to their peers to discover the new network
addresses of their peers. This is important since a distributed computation may be restarted on a
different cluster than its original one.

Virtualization of ids: Ids (process id, FILL IN) are assigned by the kernel, by a peer process, and by
remote processes. Upon restart, the external agent may wish to assign a different id than the one
assigned prior to checkpoint. Techniques for virtualization of ids are described in Section 4.

2

3 Writing Plugins

3.1 Invoking a plugin

Plugins are just dynamic run-time libraries (.so files). They are invoked at the beginning of a DMTCP
computation as command-line options:

dmtcp checkpoint --with-plugin PLUGIN1.so:PLUGIN2.so myapp

Note that one can invoke multiple plugins as a colon-separated list. One should either specify a full
path for each plugin (each .so library), or else to define LD LIBRARY PATH to include your own plugin
directory.

3.2 The plugin mechanisms

The mechanisms of plugins are most easily described through examples. This tutorial will rely on the
examples ins in DMTCP ROOT/test/plugin. To get a feeling for the plugins, one can “cd” into each of the
subdirectories and execute: “make check”.

3.2.1 Plugin events

For context, please scan the code of DMTCP ROOT/plugin/example/example.c. Executing “make check” will
demonstrate the intended behavior. Plugin events are handled by including the function dmtcp process event.
When a DMTCP plugin event occurs, DMTCP will call the function dmtcp process event for each plugin.
This function is required only if the plugin will handle plugin events. See Appendix A for further details.

void dmtcp_process_event(DmtcpEvent_t event, DmtcpEventData_t *data)
{
switch (event) {
case DMTCP_EVENT_WRITE_CKPT:
printf("\n*** The plugin is being called before checkpointing. ***\n");
break;

case DMTCP_EVENT_RESUME:
printf("*** The plugin has now been checkpointed. ***\n");
break;

case DMTCP_EVENT_THREADS_RESUME:
if (data->resumeInfo.isRestart) {
printf("The plugin is now resuming or restarting from checkpointing.\n");

} else {
printf("The process is now resuming after checkpoint.\n");

}
break;

...
default:
break;

}
NEXT_DMTCP_PROCESS_EVENT(event, data);

}

ACTUALLY, I THINK MY EXAMPLE plugin was calling the wrong event name. I’ll look
at this more carefully later. – Gene

I’LL FINISH WRITING LATER.
Plugin events:

3

*** The model for events: When a DMTCP event occurs, DMTCP calls ROUTINE in each plugin, in
the order that the plugins were loaded, offering each plugin a chance to handle the event. If ROUTINE
is not defined in a plugin, DMTCP skips calling that plugin. When ROUTINE is called, it is given the
unique event id, and a switch statement can decide whether to take any special action. If no action is taken,
ROUTINE returns XXX, and the next plugin is offered a chance to handle the event. If a plugin does handle
the event, a typical user code fragment will: A. optionally carry out any pre-processing steps B. optionally
ask DMTCP to invoke the next event handler C. optionall carry out any post-processing steps

If all three steps are invoked, this effectively creates a wrapper function around any later plugins that
handle the same event. If step B is omitted, no further plugins will be offered the opportunity to handle the
event.

3.2.2 Plugin wrapper functions

In its simplest form, a wrapper function can be written as follows:

unsigned int sleep(unsigned int seconds) {
static unsigned int (*next_fnc)() = NULL; /* Same type signature as sleep */
struct timeval oldtv, tv;
gettimeofday(&oldtv, NULL);
time_t secs = val.tv_sec;
printf("sleep1: "); print_time(); printf(" ... ");
unsigned int result = NEXT_FNC(sleep)(seconds);
gettimeofday(&tv, NULL);
printf("Time elapsed: %f\n",

(1e6*(val.tv_sec-oldval.tv_sec) + 1.0*(val.tv_usec-oldval.tv_usec)) / 1e6);
print_time(); printf("\n");

return result;
}

In the above example, we could also shadow the standard “sleep” function by our own implementation,
if we omit the call to “NEXT FNC”.
To see a related example, try:

cd DMTCP ROOT/test/plugin/sleep1; make check

Wrapper functions from distinct plugins can also be nested. To see a nesting of plugin sleep2 around sleep1,
do:

cd DMTCP ROOT/test/plugin; make; cd sleep2; make check

Plugin wrappers:
Use sleep1/sleep2 for the example.
(see paper for other; mention tech. report ??, if ONWARD allows i.t)

3.2.3 Plugin coordination among multiple or distributed processes

It is often the case that an external agent will assign a particular initial id to your process, but later assign
a different id on restart. Each process must re-discover its peers at restart time, without knowing the
pre-checkpoint ids.

DMTCP provides a “Publish/Subscribe” feature to enable communication among peer processes. Two
plugin events allow user plugins to discover peers and pass information among peers. The two events are:
DMTCP EVENT REGISTER NAME SERVICE DATA DMTCP EVENT SEND QUERIES. DMTCP guarantees to provide a
global barrier between the two events.

4

An example of how to use the Publish/Subscribe feature is contained in the directory, DMTCP ROOT/test/plugin/example-
db . The explanation below is best understood in conjunction with reading that example.

A plugin processing DMTCP EVENT REGISTER NAME SERVICE DATA should invoke:
int dmtcp send key val pair to coordinator(const void *key, size t key len, const void *val, size t val len).

A plugin processing DMTCP EVENT SEND QUERIES should invoke:
int dmtcp send query to coordinator(const void *key, size t key len, void *val, size t *val len).

3.2.4 Using plugins to virtualize ids

In this section, we consider a further complication. If the user code or run-time library has cached that
initial id, then this presents a problem on restart. Rather than create an independent mechanism, this
section shows how to handle this problem using existing tools.

Kapil, you said that Torque had a good example of this. What is it?
It is often the case that an external agent will assign a particular initial id to your process, but later

assign a different id on restart. If the user code or run-time library has cached that initial id, then this
presents a problem on restart. Each process must re-discover its peers at restart time, without knowing the
pre-checkpoint ids.

The solution is to virtualize the id. This mechanism is used internally in DMTCP to virtualize the many
ids provided by the kernel, by network host ids, and so on. This section describes how your own plugin can
take advantage of the same mechanism.

A good example of the use of virtualization occurs in the Torque plugin at DMTCP ROOT/contrib/torque.
IS THIS TRUE? WHAT IS BEING VIRTUALIZED?

4 Writing Plugins that Virtualize IDs and Other Names

Most writers of plugins can skip this section. Virtualization of names is required if

5 Caveats

CAVEATS: Does your plugin break normal DMTCP? to test this, modify DMTCP, and copy your plugin
into DMTCP ROOT/lib, and then run ’make check’ for DMTCP as usual.

SHARED MEMORY REGIONS: If two or more processes share a memory region, then the plugin writer
must be clear on whether DMTCP or the plugin has responsibility for restoring the shared memory region.
Currently, EXPLAIN

Virtualizing long-lived objects: HOWTO
INTERACTION OF MULTIPLE PLUGINS: For simple plugins, this issue can be ignored. But if your

plugin has talbes with long-lived data, other wrappers may create additional instantiattions. It is reasonable
for them to do this for temporary data structures at the time of checkpoint or at the time of restart. But
normally, such an object, created when the checkpoint event occurs, should be destroyed before creating the
actual checkpoint image. Similarly, at restart time, if new instances are created, they should be destroyed
before returning control to the user threads. It is polite for a plugin to check the above restrictions. If it is
violated, the plugin should print a warning about this. This will help others, who accidentally create long-
lived objects at checkpoint- or restart-time, without intending to. If the other plugin intends this unusual
behavior, one can add a whitelist faeature for other plugings to declare such intentions. This small effort
will provide a well-defined protocol that limits the interaction between distinct plugins. Your effort helps
others to debug their plugins, and a similar effort on their part will help you to debug your own plugin.

Putting a printf inside a plugin at the time of checkpoint is dangerous. This is because printf indirectly
invokes a lock to prevent two threads from printing simultaneously. This causes the checkpoint thread to
call a printf. See README in test/plugin.

At checkpoint time, the DMTCP user thread will stop on that same lock. This causes the two threads
to deadliock.

5

This use of conflicting locks is a bug in DMTCP as of DMTCP-2.0. It will be fixed in the future version
of DMTCP.

A Appendix: Plugin Manual

A.1 Plugin events

A.1.1 dmtcp process event

In order to handle DMTCP plugin events, a plugin must define dmtcp process event.

NAME
dmtcp_process_event - Handle plugin events for this plugin

SYNOPSIS
#include "dmtcp/plugin.h"

void dmtcp_process_event(DmtcpEvent_t event, DmtcpEventData_t *data)

DESCRIPTION
When a plugin event occurs, DMTCP will look for the symbol dmtcp_process_event
in each plugin library. If the symbol is found, that function will be called
for the given plugin library. DMTCP guarantees only to invoke the first such
plugin library found in library search order. Occurences of
dmtcp_process_event in later plugin libraries will be called only if
each previous function had invoked NEXT_DMTCP_PROCESS_EVENT.
The argument, <event>, will be bound to the event being declared by
DMTCP. The argument, <data>, is required only for certain events.
See the following section, ‘‘Plugin Events’’ for a list of all
events.

SEE ALSO
NEXT_DMTCP_PROCESS_EVENT

A.1.2 NEXT DMTCP PROCESS EVENT

A typical definition of dmtcp process event will invoke NEXT DMTCP PROCESS EVENT.

NAME
NEXT_DMTCP_PROCESS_EVENT - call dmtcp_process_event in next plugin library

SYNOPSIS
#include "dmtcp/plugin.h"

void NEXT_DMTCP_PROCESS_EVENT(event, data)

DESCRIPTION
This function must be invoked from within a plugin function library
called dmtcp_process_event. The arguments <event> and <data> should
normally be the same arguments passed to dmtcp_process_event.

NEXT_DMTCP_PROCESS_EVENT may be called zero or one times. If invoked zero

6

times, no further plugin libraries will be called to handle events.
The behavior is undefined if NEXT_DMTCP_PROCESS_EVENT is invoked more than
once. The typical usage of this function is to create a wrapper around
the handling of the same event by later plugins.

SEE ALSO
dmtcp_process_event

If user-installed package, compile with -IDMTCP ROOT/dmtcp/include .

A.1.3 Event Names

The rest of this section defines plugin events. The complete list of plugin events is always contained in
DMTCP ROOT/dmtcp/include/dmtcp/plugin.h .

DMTCP guarantees to call the dmtcp process event function of the plugin when the specified event oc-
curs. If an event is thread-specific (GIVE EXAMPLES), DMTCP guarantees to call dmtcp process event
within the same thread.

DO I HAVE ALL THE THREAD-SPECIFIC EVENTS?
Plugins that pass significant data through the data parameter are marked with an asterisk: ∗. Most plugin

events do not pass data through the data parameter. Currently, the plugins that use the data parameter
use it to test if this is restart or resume??. In this case, why don’t we have a single function
that every plugin can call to test if this is during a restart or resume?

Note that the events
RESTART / RESUME / REFILL / REGISTER NAME SERVICE DATA / SEND QUERIES
should all be processed after the call to NEXT DMTCP PROCESS EVENT() in order to guarantee that
the internal DMTCP plugins have restored full functionality.

Checkpoint-Restart

DMTCP EVENT WRITE CKPT — Invoked at final barrier before writing checkpoint

DMTCP EVENT RESTART — Invoked at first barrier during restart of new process

DMTCP EVENT RESUME — Invoked at first barrier during resume following checkpoint

Coordination of Multiple or Distributed Processes during Restart (see Appendix A.2. Pub-
lish/Subscribe)

DMTCP EVENT REGISTER NAME SERVICE DATA∗ restart/resume

DMTCP EVENT SEND QUERIES∗ restart/resume

WARNING: EXPERTS ONLY FOR REMAINING EVENTS

Init/Fork/Exec/Exit

DMTCP EVENT INIT — Invoked before main (in both the original program and any new program called
via exec)

DMTCP EVENT EXIT — Invoked on call to exit/ exit/ Exit return from main?;

DMTCP EVENT PRE EXEC — Invoked prior to call to exec

DMTCP EVENT POST EXEC — Invoked before DMTCP EVENT INIT in new program

DMTCP EVENT ATFORK PREPARE — Invoked before fork (see POSIX pthread atfork)

7

DMTCP EVENT ATFORK PARENT — Invoked after fork by parent (see POSIX pthread atfork)

DMTCP EVENT ATFORK CHILD — Invoked after fork by child (see POSIX pthread atfork)

Barriers (finer-grainded control during checkpoint-restart)

DMTCP EVENT WAIT FOR SUSPEND MSG — Invoked at barrier during coordinated checkpoint

DMTCP EVENT SUSPENDED — Invoked at barrier during coordinated checkpoint

DMTCP EVENT LEADER ELECTION — Invoked at barrier during coordinated checkpoint

DMTCP EVENT DRAIN — Invoked at barrier during coordinated checkpoint

DMTCP EVENT REFILL — Invoked at first barrier during resume/restart of new process

Threads

DMTCP EVENT THREADS SUSPEND — Invoked within checkpoint thread when all user threads have
been suspended

DMTCP EVENT THREADS RESUME — Invoked within checkpoint thread before any user threads are
resumed.
For debugging, consider calling the following code for this event: static int x = 1; while(x);

should we have separate DMTCP EVENT THREADS RESUME? — I vote yes.

DMTCP EVENT PRE SUSPEND USER THREAD — Each user thread invokes this prior to being sus-
pended for a checkpoint

DMTCP EVENT RESUME USER THREAD — Each user thread invokes this immediately after a re-
sume or restart (isRestart() available to plugin)

should we have separate DMTCP EVENT RESTART USER THREAD? — I vote yes.

DMTCP EVENT THREAD START — Invoked before start function given by clone

DMTCP EVENT THREAD CREATED — Invoked within parent thread when clone call returns (like
parent for fork)

DMTCP EVENT PTHREAD START — Invoked before start function given by pthread created

DMTCP EVENT PTHREAD EXIT — Invoked before call to pthread exit

DMTCP EVENT PTHREAD RETURN — Invoked in child thread when thread start function of pthread create
returns

A.2 Publish/Subscribe

Section refsec:publishSubscribe provides an explanation of the Publish/Subscribe feature for coordination
among peer processes at resume- or restart-time. An example of how to use the Publish/Subscribe feature
is contained in the directory, test/plugin/example-db .

The primary events and functions used in this feature are:
DMTCP EVENT REGISTER NAME SERVICE DATA int dmtcp send key val pair to coordinator(const void *key,
size t key len, const void *val, size t val len)
DMTCP EVENT SEND QUERIES
int dmtcp send query to coordinator(const void *key, size t key len, void *val, size t *val len)

8

A.3 Wrapper functions

fILL IN

A.4 Miscellaneous utility functions

Numerous DMTCP utility functions are provided that can be called from within dmtcp process event().
For a complete list, see DMTCP ROOT/dmtcp/include/dmtcp/plugin.h . The utility functions are still under
active development, and may change in small ways.

9

